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Abstract

We develop a model that allows us to make a quantitative statement about the effect and
accuracy of calculating the total energy E in the billing of natural gas, making use of
time-averaged data for the volume Vi and calorific value Hi. This is achieved for the
current approach performed by VSL and the energy producer, in which now carefully the
dependencies between successive measurements are taken into account. Furthermore, we
introduce a new methodology that aims to solve the drawbacks of the current averaging
procedure. This method concerns filtering, coarse-graining, and segmentation.

Keywords: metrology, gas flow metering, time series, averaging over time, statistically
stationary, filter, change detection, segmentation.

1 Introduction
At the Study Group Mathematics with Industry held at Vrije Universiteit of Amsterdam in the
week of 29 January – 2 February, a problem was posed by VSL. VSL is the Dutch Metrology
Institute, and it makes measurement results directly traceable to international standards. The
fiscal metering of natural gas is often performed using a flow meter and a gas chromatograph.
The flow meter measures the volume flow rate of the gas passing the metering station. The
gas chromatograph measures the composition from which the calorific value is determined.
Both are measured at regular intervals in time, but not necessarily at the same intervals. It
can be that the gas chromatograph produces a result every 5 minutes, whereas the flow meter
submits a result every minute.

From this, the energy (for Standardization, 2018) can be determined as E = HV , where
H denotes the calorific value of the gas (for Standardization, 2016) and V the volume at
reference conditions (e.g., 0 degrees Celsius and 101.325 kPa). The uncertainty of the total
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energy delivered over a certain time is an important quantity for operating the gas grid. This
will ensure energy producers can feed the grid and users can draw gas from the grid.

The calorific value H and volume V are often averages over time (e.g., hourly average). These
averages are usually calculated as the arithmetic mean of a series of measurement results.
However, either or both quantities may change during this time period. These changes do not
follow any particular pattern; they can be a steady increase/decrease, but depending on supply
and demand, they can also have any other pattern. More importantly, these measurement
results are not independent since these are subsequent time points.

VSL wanted to know the best averages for aggregating the measurement data and to evalu-
ate the uncertainty of the mean. This problem is connected to WP 4 of the Euramet project
Meth4H2. The overall objective of the project is to develop further and integrate the metrol-
ogy necessary to support the entire supply chain of hydrogen, from production to storage and
end-use. The project will disseminate metrological traceability to the field so that measure-
ment results become fit-for-purpose with respect to health, safety, environmental, and fiscal
purposes.

Section 2 gives a more detailed description of the problem under study. In particular, we
provide details of the current averaging approach performed by VSL and the energy producer.
Then, in Section 3, we give a mathematical description of the current approach and answer the
question of how to correctly compute the total uncertainty of the total energy. Subsequently,
in Section 4, we discuss the effect and drawbacks of the arithmetic mean and introduce a
more generalized framework of averaging, which we refer to as filtering and coarse-graining.
In Section 5, we show how autoregressive models can be used after one has partitioned a
time series into stationary and transitional segments. Ultimately, we conclude and discuss in
Section 6.

2 Problem statement and approach
In this section, we first describe the current approach to fiscal metering taken by the energy
producer, which is based on taking averages. Based on this, we formulate our research ques-
tions. We conclude this section with an improved approach that addresses issues with the
current methodology.

2.1 Overview of the current approach
The energy producer measures both the calorific value and volume at a metering station, see
Figure 1 (left). The calorific value and the volume are measured at certain, not necessarily
the same, time intervals. As illustrated in Figure 1 (right), the energy producer calculates
averages and standard deviations of these measurements over fixed intervals, e.g., 15 minutes.
The aggregated data is then sent to VSL. We denote these averaged values of calorific value
and volume by Hi and Vi, respectively. From this, the total energy can then be determined by

E =
∑

i

HiVi. (1)
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Figure 1: Schematic representation of the measurements at a metering station of an energy
producer (left). A simplified schematic overview of the current approach to averaging time-
series data (right), and we refer to Section 3.1 for more information.

In the past, the total uncertainty of total energy was computed by assuming that all data
points were uncorrelated. This assumption is false, of course, as it describes continuous
dynamics. Apart from the loss of information caused by aggregating raw measurement values
into averages and standard deviations, a significant problem is that this method a priori lacks
a clear way to accurately assess the total uncertainty of the computed total energy. This
is because we must not ignore the dependencies between successive measurements. The
solution to this issue is nontrivial and subject to Section 3.

2.2 Research questions
The issues indicated above led us to the following research questions:

1. What is the effect of the averaging on the uncertainty in fiscal metering?

2. How can the uncertainty be correctly calculated, taking into account dependencies?

In the next subsection, we outline our approach to tackle these research questions.

2.3 Overview and new methodology
One of our main goals is to outline a model in which we can quantify the effect of averaging
and deal with in-time correlated data. The basic step in our approach is to describe both the
measurements at the metering stations done by the energy producer, i.e., the raw data, as well
as the subsequent aggregation of the data by a model. The model for the raw measurements
has to take into account the dependencies between the successive measurements. This is done
in Section 3.

One way to approach the above is to use time series models from the Box-Jenkins approach.
In particular, we look at AR(1) and AR(2) processes because, on the one hand, these mod-
els (especially AR(2)) work surprisingly well in several industrial contacts, and on the other
hand, they allow for explicit calculations (see, e.g., textbooks like Chatfield and Xing (2019),
Cowpertwait and Metcalfe (2009) and Shumway and Stoffer (2000)). Explicit calculations
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Figure 2: Synthetic data of the calculated averages of volume Vi (left) and calorific value Hi

(right) over fixed intervals of 15 minutes. Plots are produced by SWI_VSL_main.py and are
an improvement of the synthetic data set provided (see Appendix E) in the sense that succes-
sive measurements are correlated. Note that the time series of the volume is constructed by
means of three different AR(1) processes and the calorific value by only one AR(1) process.
See Section 3.3 for more information.

are important because even if the models are too simple for reality, they allow us to use these
models as test benches to compare the current approach with new approaches. Using math-
ematical models not only allows us to incorporate dependencies but also to explore refined
ways of averaging based on ideas of signal processing. This is subject to Section 3.3 and
Section 4.

It must be pointed out that a data set like in Figure 2 (left) cannot be modeled with only
one autoregressive model. The time series must be partitioned into several segments before
we can argue that the data can be seen as a realization of an AR process. This is explained
in Section 5. Note that in most sections, we assume without loss of generality that we are
considering a period of time in which the time series can be seen as a single AR process.

3 Modelling the current approach
In this section, we formulate a mathematical model corresponding to the current averaging
method employed by VSL and the energy produced. In Section 3.1, we provide the current
averaging method and derive an upper bound for the uncertainty in the total energy. We then
extend the work in Section 3.2 by explicitly considering the correlations present in the data.
This results in a valid approximation for the desired uncertainty. At last, in Section 3.3, we
consider the case where more information on the underlying processes is available. Under the
assumption that volume and the calorific value can be modeled by means of AR processes,
which is likely to hold (recall Section 2.3), we obtain an analytical expression for the total
uncertainty in terms of knowns without the need for approximations.

We refer to Crowder et al. (2020) and Pavese and Forbes (2008) for suitable textbooks on
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statistics and modeling in metrology from a mathematical perspective.

3.1 A model corresponding to the current approach and an upper bound
for the total uncertainty

In this section, we derive a model which explains the current approach in mathematical terms
step by step. Also, we obtain an upper bound for the total uncertainty. As illustrated in Figure
1, we need to distinguish between different layers to model the measurement operation and
the averaging process by the energy producer accurately.

In the first layer, K measurements are repeated in a very short time frame to obtain estimates
of the precision of the raw measurements (in virtue of repeatability). These repeated mea-
surements are averaged, and the standard deviation is computed. We assume a fixed time ∆
between the subsequent averaged measurements. In the second and third layers, we consider
two additional processes of averaging. We introduce a clear notation before we elaborate on
the specific operations within these layers.

We denote the individual measurements by Wi, j,k (volume) and Di, j,k (calorific value), respec-
tively. Here, i is the number of the time interval under consideration, j denotes the index
of the averaged measurements in one of the time intervals of length ∆, and k is the index
of the repeated measurement at a time instance. Therefore, if we start at t = 0, then the
repeated measurements Wi, j,k and Di, j,k for k = 1, . . . ,K take place at time (im+ j)∆, where m
is the fixed amount of averaged measurement instances within an arbitrary time interval. We
assume additive measurement errors εi, j,k (volume) and δi, j,k (calorific value).

In mathematical terms, we consider

Di, j,k = ηi, j + δi, j,k, δi, j,k
iid
∼ N(0, τ2

i, j), Wi, j,k = µi, j + εi, j,k, εi, j,k
iid
∼ N(0, σ2

i, j). (2)

Here, the values µi, j and ηi, j denote the real values of the volume and the calorific value,
respectively, at time (im+ j)∆.We like to point out that the normal distribution can be replaced
by any distribution with mean zero and finite variance.

The statistics obtained from the individual measurements at time points (im + j)∆ are the
means Zi, j (volume) and Yi, j (calorific value) and the sample variances S 2

Z;i, j and S 2
Y;i, j. That

is,

Yi, j =
1
K

K∑
k=1

Di, j,k, S 2
Y;i, j =

1
K

K∑
k=1

(Di, j,k − Yi, j)2,

Zi, j =
1
K

K∑
k=1

Wi, j,k, S 2
Z;i, j =

1
K

K∑
k=1

(Wi, j,k − Zi, j)2.

(3)

These variables represent the data that the energy producer has available.

Subsequently, the energy producer aggregates m of such computed statistics into averaged
values Vi and Hi of the volume and calorific value, respectively. We capture this operation
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within the second layer. We represent the uncertainty by the associated sample variances:

Hi =
1
m

m∑
j=1

Yi j, S 2
H;i =

1
mK

m∑
j=1

K∑
k=1

(Di, j,k − Hi)2,

Vi =
1
m

m∑
j=1

Zi j, S 2
V;i =

1
mK

m∑
j=1

K∑
k=1

(Wi, j,k − Vi)2.

(4)

These sample variances can be calculated by adding the sample variances of the averaged
repeated measurements and the sample variance of this layer relative to the previous layer,
see Appendix A. More specifically, we have the decompositions

S 2
H;i =

1
mK

m∑
j=1

K∑
k=1

(Di, j,k − Hi)2

︸                         ︷︷                         ︸
overall uncertainty in i-th

interval of length m∆

=
1
m

m∑
j=1

S 2
Y;i, j︸        ︷︷        ︸

uncertainty in
measurements

+
1
m

m∑
j=1

(Yi, j − Hi)2

︸               ︷︷               ︸
fluctuations in time

,

S 2
V;i =

︷                         ︸︸                         ︷
1

mK

m∑
j=1

K∑
k=1

(Wi, j,k − Vi)2 =

︷        ︸︸        ︷
1
m

m∑
j=1

S 2
Z;i, j +

︷               ︸︸               ︷
1
m

m∑
j=1

(Zi, j − Vi)2 .

(5)

The energy (product of calorific value and volume) within time interval i is denoted by

Ei = HiVi. (6)

An appropriate estimator Γi for the variance of Ei is obtained by exploiting identity (37) in
Appendix A, which yields

Γi = S 2
H;iS

2
V;i + H2

i S 2
V;i + V2

i S 2
H;i ≈ Var(Ei). (7)

Alternatively, the product of the calorific value and volume could also have been consid-
ered one layer earlier, thus by defining Ei, j = Yi, jZi, j. This choice would result in a smaller
variance, which illustrates that our chosen approach is less optimal in that sense; we simply
obtain an upper bound for the uncertainty. However, an earlier product results in non-explicit
expressions for the uncertainty terms, i.e., there is no equivalent to the useful decompositions
as in (5).

The total energy, as determined in the third and last layer simply reads

T = m∆
n∑

i=1

Ei, (8)

together with its variance, i.e., the total uncertainty squared,

Var(T ) = m2∆2

 n∑
i=1

Var(Ei) + 2
∑

1≤i<i′≤n

Cov(Ei, Ei′ )

 . (9)
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Now, we can use the Cauchy-Schwarz inequality |Cov(Ei, Ei′ )| ≤
√

Var(Ei)
√

Var(Ei′ ) to con-
clude that

Var(T ) ≤ m2∆2

 n∑
i=1

√
Var(Ei)

2 . (10)

As a last step, we note that Γi in (7) is an accurate estimator of Var(Ei), which yields

Total uncertainty ≲ m∆

 n∑
i=1

√
Γi

 , (11)

where ≲ is an approximate inequality since the right-hand side is an estimator. The inequality
in (11) gives the desired upper bound for the uncertainty in the total energy.

Discussion Under the assumption that µi, j and ηi, j are uncorrelated, the expression in (9)
simplifies and we obtain

Var(T ) = m2∆2
n∑

i=1

Var(Ei). (12)

However, from a physical point of view, this assumption seems to be false. Indeed, it is clear
that the volume of the gas at a certain point in time is influenced by its past, and likewise for
the calorific value. We shall continue in the next section with the understanding that the data
is related in order to approximate (9) accurately.

Furthermore, suppose that we have Var(Ei) ≈ N for all 1 ≤ i ≤ n, for some N > 0. Then,
upon ignoring the covariances, we obtain

Total uncertainty ≲ m∆
√

nN, (13)

which is generally speaking incorrect. Using the upper bound (11) results into

Total uncertainty ≲ m∆n
√

N = Total time ·
√

N, (14)

where Total time = nm∆. The increase on the right-hand side is due to the covariances, and
the truth is expected to be somewhere in the middle. We study this in future sections.

3.2 A more accurate approximation of the total uncertainty using the
fact that the data is correlated

In this section, we no longer assume the data to be uncorrelated. The volume measurements
are assumed to be correlated, and the same holds for the calorific value measurements. This
highlights the importance of the inclusion of the second term within (9) as a contribution of
these correlations to the uncertainty in the total energy. Therefore, from this point onwards,
we consider µi, j and ηi, j to be realisations of the correlated stochastic processes (η(t))t≥0 and
(µ(t))t≥0, respectively.
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By invoking Ei = HiVi we can rewrite the covariance-term in (9) as follows

Cov(Ei, Ei′ ) = Cov(Hi,Hi′ )Cov(Vi,Vi′ ) + E[Hi]E[Hi′ ]Cov(Vi,Vi′ )
+ E[Vi]E[Vi′ ]Cov(Hi,Hi′ ).

(15)

We can approximate the means by the single observations in the same manner as done in
Appendix A. Regarding the covariance terms, we have

Cov(Hi,Hi′ ) =
1

m2

m∑
ℓ=1

m∑
ℓ′=1

Cov(Yiℓ,Yi′ℓ′ ) =
1

m2

m∑
ℓ=1

m∑
ℓ′=1

Cov(ηiℓ, ηi′ℓ′ ), (16)

which follows from the bi-linearity and the independence of the measurement errors. Like-
wise, the following holds

Cov(Vi,Vi′ ) =
1

m2

m∑
ℓ=1

m∑
ℓ′=1

Cov(Ziℓ,Zi′ℓ′ ) =
1

m2

m∑
ℓ=1

m∑
ℓ′=1

Cov(µiℓ, µi′ℓ′ ). (17)

Without more knowledge of the statistical properties of the processes ηt and µt it is difficult to
find a meaningful, analytical expression in terms of knowns for Cov(Hi,Hi′ ) and Cov(Vi,Vi′ ).
However, we can approximate the covariances Cov(Yiℓ,Yi′ℓ′ ) and Cov(Ziℓ,Zi′ℓ′ ) by introduc-
ing the sample covariances

S H;i,i′ =
1
m

m∑
j=1

m∑
j′=1

(Yi j − Hi)(Yi′ j′ − Hi′ ),

S V;i,i′ =
1
m

m∑
j=1

m∑
j′=1

(Zi j − Vi)(Zi′ j′ − Vi′ ).

(18)

These terms can be directly approximated by evaluation using the available data. To sum up,
we can approximate Cov(Ei, Ei′ ) by

Γi j = S H;i,i′S V;i,i′ + HiHi′S V;i,i′ + ViVi′S H;i,i′ ≈ Cov(Ei, Ei′ ). (19)

Together with the estimators Γi of Var(Ei), this gives us an approximation of the uncertainty of
the total energy. Importantly, note that Γii , Γi, for all i, because S ∗;i,i , S 2

∗;i with ∗ ∈ {H,V}.

In conclusion, we have determined a valid approximation of the total uncertainty by direct
implementation of the data. If more statistical properties on the underlying processes ηt and
µt are assumed to be known, we can say more about the uncertainty without the need for
appropriate approximations. We will discuss this rationale in more detail in the next section.

3.3 An underlying stationary process
Our approach is based on the idea that we can segment the time series so that all observa-
tions within a segment behave similarly in a statistical sense. This is called stationarity in
the statistical literature. Please note that unlike in other mathematical communities where
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stationarity basically means constant behavior, it is meant here that the statistical behavior
(means and covariances) does not change over time. In other words, the mean is constant,
and the covariance between the two observations depends only on the time difference be-
tween them. Since covariances are related to second-order moments, this type of stationarity
is often called second-order stationarity.

In this section, we consider µi, j and ηi, j to be realisations of specific stationary stochastic
processes (η(t))t≥0 and (µ(t))t≥0, respectively. Concerning the real measurement structure, an
AR(1) or AR(2) process could, for example, be suitable, as more commonly done in practice.

Under these assumptions, we have expressions for the mean, variance, and covariances of
the underlying processes (η(t))t≥0 and (µ(t))t≥0 in terms of one or more unknown model pa-
rameters. We can find accurate estimations of these key parameters by implementation of the
measurement data available

Consequently, we are able to evaluate the uncertainty in the total energy directly. Indeed,
the expressions for Var(Ei) and Cov(Ei, Ei′ ) within (9) can now be found analytically. For
example, for the latter, this can be done by employing equations (15)-(17) and filling in the
covariances corresponding to (η(t))t≥0 and (µ(t))t≥0. See Appendix B for such statistics for
AR(1) and AR(2) processes.

Although analytically advantageous, we have to be able to confidently 1) identify the under-
lying process and 2) estimate the key parameters.

3.4 Simulations

Let us introduce the notion of relative error, which is given by

Relative error =
Absolute error

Total value
× 100% ≈

Total uncertainty
Total energy

× 100%. (20)

Exploiting the upper bound in (11) yields

Relative error ≲
m∆
E

n∑
i=1

√
Γi × 100%. (21)

For the synthetic data as in Figure 2, it turns out that the upper bound on the total uncertainty
of the total energy results in a suitable value, namely: Relative error ≲ 3.2%.

Note that if one assumes that the covariance structure can be ignored entirely (which is false!),
and subsequently exploit formula (9) with Cov(Ei, Ei′ ) = 0 for all 1 ≤ i < i′ ≤ n, one
would obtain a relative error which is at least a factor 10 smaller for this example. This
motivates that, indeed, there was a need for a better understanding of the total uncertainty.
One could improve the approximation of the relative error by the considerations in Section 3.2
and Section 3.3, and see also Section 6 for further discussion.
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Figure 3: An illustration of Ei = HiVi with respect to time instant i (blue), where Hi and Vi

are as in Figure 2. The gray dashed lines are obtained by determining Ei ±
√
Γi for all time

instants i. On account of formula (21), we obtain the following: Relative error ≲ 3.2%.

4 The effect of averaging and towards a general approach
The goal of this section is to study the implications of averaging, as performed by the energy
producer (recall Section 3.1), on the total uncertainty and on how to improve it. We set out a
more general approach than just taking the average, which is achieved by means of exploiting
existing theory on filtering and coarse-graining for time series. In Section 4.1, we focus on
the drawbacks that come with simple averaging. In Section 4.2 we introduce the concepts of
filtering and coarse-graining (also referred to as downsampling), respectively, and find several
useful analytical expressions. It is assumed throughout that we are dealing with a statistically
stationary process, as justified in Section 3.3.

4.1 Drawbacks of the arithmetic mean
In this section, we describe the drawbacks of the arithmetic mean as a method to average
the data. Averaging is a mathematical procedure that involves taking an integral (in a certain
sense, see also Section 4.2). In probability theory, the computation of means and variances
also involves integration. The integral is mathematically defined via a limiting procedure
that involves Riemann sums and partitions. Different choices of sequences of partitions lead
to different ways of converging towards the true integral, see Appendix C.1. Furthermore,
only specific choices of Riemann sums and partitions respect important properties of the true
integral at the continuous level, such as the chain rule. We are interested in seeing how the
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Figure 4: An illustration of a smooth curve that goes through the five points X1, X2, X3, X4, X5.

mean and the variance are affected by the choices of the number of elements in the partition
and the choice of Riemann sums.

Let us consider a simple example to get a feeling for the effects of averaging on means and
variances. Suppose X1, X2, X3, X4, X5 i.i.d. with Var(Xi) = σ2 . We compare approximating
the area under the curve by first dividing the area into two halves and then by performing the
same computation while dividing the area into four parts (see Figure 4). Observe that

Var
(
2 ·

X1 + X2 + X3

3
+ 2 ·

X3 + X4 + X5

3

)
=

64
18
σ2 ≈ 3.56 · σ2 (22)

and

Var
(X1 + X2

2
+

X2 + X3

2
+

X3 + X4

2
+

X4 + X5

2

)
=

63
18
σ2 ≈ 3.5 · σ2. (23)

The major conclusion is that although averaging on a finer scale improves accuracy, it also
has a negative effect on precision (i.e., higher variance).

4.2 Generalizing the averaging method: filtering and coarse-graining
We now describe some generalizations of the arithmetic mean. The generalization uses meth-
ods of signal processing, specifically filters. In signal processing, a filter is some device or
process that removes unwanted features from a signal, see Vetterli et al. (2014), de Cheveigné
and Nelken (2019), and references therein. In the context of the problem here, we want to
reduce the uncertainty in the value of the energy. By taking into account more measurements
over a longer time period, it is expected that the uncertainty will be reduced. The filtering
theory will quantify exactly by how much.

Note that the below can be used to replace the following quantities: sample mean (4), sample
variance (5), and sample covariance (18). Any other formula in Section 3 remains valid. In
particular, one could now invoke SWI_VSL_main.py and SWI_VSL_functions.py to do the
same numerical analysis as in Section 3.4, but now for any possible filter.
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4.2.1 Filtering and its characteristics

In this section, we describe how filtering works. We consider a discrete filtering process. Let
Xt be a stationary time series with mean µX and autocovariance function γX(h). Furthermore,
we have a transfer function ψ( j) corresponding to the filtering process under consideration.
The filtered process can be defined as

Yt =

∞∑
j=−∞

ψ( j)Xt− j, (24)

where ψ only takes finitely many non-zero values. We refer to Appendix C.2 for its contin-
uous analog. The following link provides an extensive list of possible filters suitable for a
Python implementation:

https://docs.scipy.org/doc/scipy/reference/signal.windows.html

Regarding the mean of the filtered process, we observe the identity

µY B E (Yt) =
∞∑

j=−∞

ψ( j)E
(
Xt− j

)
= µX

∞∑
i=−∞

ψ( j) C µX . (25)

Here, we used the stationarity of the original time series Xt and one of the basic properties of
the transfer function ψ.

We calculate the autocovariance function of the filtered process as follows

γY (h) = Cov (Yt,Yt+h) = Cov

 ∞∑
i=−∞

ψ(i)Xt−i,

∞∑
j=−∞

ψ( j)Xt+h− j


=

∞∑
i=−∞

∞∑
j=−∞

ψ(i)ψ( j)Cov
(
Xt−i, Xt+h− j

)
=

∞∑
i=−∞

∞∑
j=−∞

ψ(i)ψ( j)Cov
(
Xt, Xt+h+i− j

)
(26)

=

∞∑
i=−∞

∞∑
j=−∞

ψ(i)ψ( j)γX(h + i − j).

From the expressions ( 25) and (26), we can conclude that the stationarity of the original time
series Xt transfers to the filtered process Yt.

Without further assumptions, the analysis is limited. In Section 5, we exploit the strength of
numerics and compare the effect of some different filters. Below, we illustrate the power of
the analytical expressions above.

Example. We consider a simple averaging filter. For each point, the 2n nearest neighboring
points are taken into account to determine the mean. This corresponds to the following filter
function:

ψ( j) =

 1
2n+1 −n ≤ j ≤ n,
0 otherwise.

(27)

https://docs.scipy.org/doc/scipy/reference/signal.windows.html
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This gives the filtered process

Yt =

n∑
j=−n

1
2n + 1

Xt− j =
1

2n + 1
(Xt−n + Xt−n+1 + ... + Xt+n−1 + Xt+n) . (28)

If we assume Xt to be an AR(1) process, we can derive the autocovariance function of Yt as
follows

γY (h) =
n∑

i=−n

n∑
j=−n

1
(2n + 1)2 γX(h + i − j) =

1
(2n + 1)2

n∑
i=−n

n∑
j=−n

a|h+i− j|

1 − a2 σ
2
ε

=
σ2
ε(

1 − a2) (2n + 1)2

2n∑
j=−2n

a|h+ j| · (2n + 1 − | j|) . (29)

Note that only for h = 0, we can eliminate the sum. △

Discussion. Filtering can also be used to transform a statistically nonstationary sequence
into a stationary one (Box et al., 2015). Many time series in real life are not stationary, yet
a sequence is often transformed into a time series that is (assumed to be) stationary (van der
Vaart, 2021). For instance, an AR(1) process with linear growth, as in Appendix B, is not a
(statistically) stationary process. Nevertheless, taking the difference filter

∇Xk = Xk − Xk−1, (30)

that is, ψ(0) = 1 and ψ(−1) = −1, yields a stationary process.

4.2.2 Coarse-graining and its characteristics

In this section, we describe the coarse-graining procedure in the context of signal processing.
Let Xt be a stationary time series and let w be a positive integer larger than or equal to 2. We
can coarse-grain the process Xt by introducing the coarse-grained process Yt as follows:

Yt = Xw·t. (31)

The mean of the coarse-grained process Yt is equal to the mean of the original process Xt:

µX B E (Yt) = E (Xw·t) = E (Xt) C µX . (32)

For the autocovariance function, we calculate:

γY (h) = Cov (Yt,Yt+h) = Cov
(
Xw·t, Xw·(t+h)

)
= Cov (Xt, Xt+w·h) = γX(w · h). (33)

Similarly to the filtering process, we find that the stationarity of the original time series Xt

transfers to the coarse-grained process Yt.
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Figure 5: The top plot shows the typical features in the time series data for energy. The
middle plot shows the coarse-grained data and the bottom plot shows the difference between
the top and middle data, illustrating the large error in regions of abrupt changes.

4.2.3 Product of stationary processes

The product of stationary processes is again stationary, see Wecker (1978) for more details.
On a restricted time interval (see Section 5 on how to quantify this), this enables us to interpret
the energy over time as a statistically stationary process since E = HV, where the calorific
value H and volume V can be seen as statistically stationary processes.

5 Quantifying the energy uncertainty for correlated data
In this section, we describe how to quantify the energy uncertainty for correlated data when
the dataset is not stationary as a whole. We shall decompose the dataset into stationary parts
and “jump” parts by means of segmentation algorithms. These “jump” parts, which we may
also refer to as transition segments, can be approximated roughly because the time interval
on which it happens is relatively small. Therefore, the stationary parts are mainly of interest
to us.

5.1 Segmenting the data
Change point detection detects abrupt changes in the trend of time series data and can be used
to segment a time series into stationary chunks. This is necessary because abrupt changes in
the trend of a time series can cause large errors in the filtering and coarse-graining procedure,
as can be seen in Figure 5.
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Figure 6: The PELT search method for offline change point detection.

Figure 7: The binary search method for offline change point detection.

Figure 8: The window-based search method for offline change point detection.
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Figure 9: The dynamic programming search method for offline change point detection.

Abrupt changes in the trend of a time series are generally easy to detect with the human
eye, but it is more involved in detecting change points algorithmically. In the setting of the
present problem, the time series data describes the behavior of the volume and calorific value
over a fixed amount of time in the past. In other words, all data is received and processed
simultaneously. This means that offline change point detection algorithms can be used, which
are methods that detect all change points in the time series dataset. Offline change point
detection is different from online change point detection, where the time series data arrives in
a live-steamed fashion. Online change point detection is used for continuous monitoring or
immediate anomaly detection, and only the most recent change point is of interest.

While change point detection algorithms are best developed in the changepoint package in
R, python also offers several options. A particularly convenient Python package for offline
changepoint detection is the ruptures package because it is well-documented. For a review
and details on offline changepoint detection methods, see Truong et al. (2020) and references
therein. We explain and illustrate four change point detection methods below.

Pruned exact linear time (PELT) search method. The PELT search method is an exact
method with a computational cost of O(n), where n is the number of points in the time series.
The method finds change points based on cost minimization.

Binary segmentation search method. The binary segmentation search method is an ap-
proximate method with a computational cost of O(n log n), where n is the number of points
in the time series. The method finds change points based on iteratively applying a method
that finds a single change point in a dataset. Having found one such point, the dataset is then
divided into two parts, and the procedure is repeated.

Window-based search method. The window-based search method is an approximate method
that uses two adjacent windows that move along the time series. It computes a discrepancy
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between the windows, which is large when they are highly dissimilar. Based on the dis-
crepancy curve created from discrepancy over the time series, the algorithm locates optimal
change point indices in the time series.

Dynamic programming search method. The dynamic programming search method is an
exact method with a computational cost of O(kn2), where n is the number of points in the
time series and k is the number of change points. It is the most expensive of the four methods
but also produces the best results.

The dynamic programming method is the more computationally expensive method but also
yields the best results in terms of change point detection.

5.2 Stationarity tests
As explained in Section 3.3, our methods depend on (statistical) stationarity within segments.
It is therefore important to check whether the data within the segments obtained from one of
the methods described in Section 5.1 exhibit stationarity. We cannot test stationarity by fitting
models like the AR(1) and AR(2) and checking whether the estimated model parameter values
correspond to values for which the fitted model is stationary (see Appendix B). The reason is
that by fitting such models, we bias ourselves towards these models. There is thus a need to
check stationarity without assuming any specific model. Fortunately, such stationarity tests
exist. A standard test is to test stationarity in an AR model such as the Dickey-Fuller test (see
Dickey and Fuller (1979)) and the Kwiatkowskiâ€“Phillipsâ€“Schmidtâ€“Shin (KPSS) test
(see Kwiatkowski et al. (1992)).

6 Conclusions and Discussion
Let us recall the research questions:

1. What is the effect of the averaging on the uncertainty in fiscal metering?

2. How can the uncertainty be correctly calculated, taking into account dependencies?

In Section 3, and in particular Section 3.1, we have answered the second question partly by
deriving an upper bound on the total uncertainty with regards to the total energy, which is
given by

Total uncertainty ≲ m∆

 n∑
i=1

√
Γi

 , (34)

where ∆ is a fixed time between the subsequent averaged measurements, where m is the fixed
amount of averaged measurement instances within an arbitrary time interval, where n is the
number of time intervals, and where

Γi = S 2
H;iS

2
V;i + H2

i S 2
V;i + V2

i S 2
H;i, 1 ≤ i ≤ n. (35)
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Recall that Hi and Vi are the averaged values of calorific value and volume, respectively,
and S 2

V;i and S 2
H;i are the corresponding sample variances; this is the minimal data that has

to and will be provided by the energy producer. This answer is partial because we are now
giving a sufficiently high enough bound so that there is no need to understand the dependency
structure.

We like to recall that the sample variances S 2
V;i and S 2

H;i can be computed with the help of
the decomposition provided in (5). We caution the reader that obtaining S 2

V;i and S 2
H;i can

easily be done incorrectly because one has to take both the uncertainty in measurements into
account and the fluctuations in time.

A full answer to question 2 is that

Total uncertainty ≈ m∆

√√ n∑
i=1

Γi + 2
∑

1≤i<i′≤n

Γi j, (36)

where Γi j = S H;i,i′S V;i,i′ + HiHi′S V;i,i′ + ViVi′S H;i,i′ and with S H;i,i′ and S V;i,i′ the sample co-
variances of calorific value and volume, respectively. A crucial observation is that within the
expression of the sample covariances, the "uncertainty in measurements"-term is not present
because measurement errors are assumed to be independent. The total uncertainty can be
computed numerically with the help of (36) for any data set, and we have performed some
simulations in Section 3.4 for an artificial data set.

In Section 4, we have considered the first question in more depth. From the results above,
we deduce that the total uncertainty growths at least as O(m

√
n), where m is the amount of

time instants averaged upon and n the amount of time intervals, and is bounded above by
O(mn). Since the truth is somewhere in the middle, so to speak, it is better to average as little
as possible. This conclusion, however, can be improved upon by taking the dependencies
between measurements into account in a smarter way. Having introduced the framework
of filtering and coarse-graining, we provide analytical results on how the covariances are
affected by the filter considered. The filtering and coarse-graining steps come with explicit
formulas. These analytical expressions can be used numerically to find the optimal filter
for the data sets in question. We believe the Gaussian filter would perform better than the
current moving average / boxcar filter in the sense of total uncertainty while simultaneously
smoothing out the aggregated data set and containing less information than the full data set.
The latter results in several interesting follow-up research questions.

In Section 5 we have shown how to segment a data set. It is appropriate for most segments to
assume it can be modelled as an AR process. An alternative approach to the direct statistical
computations performed as in Section 3.2 is to fit an autoregressive model to the stationary
data segments. The benefit of this method is that explicit characterizations of the covari-
ance in the data set can be obtained, as illustrated in Section 3.3 and Appendix B. Recall
that the filtering and coarse-graining steps come with explicit formulas as well, which can
be exploited to find the covariance changes for autoregressive models either analytically or
numerically.
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A Fundamental statistics
In this section, we collect some important properties of variances.

Property I. The variance of a product of independent variables X and Y is given by

Var(XY) = E
(
XY)2

)
− (E(XY))2

= E(X2) E(Y2) − (E(X))2 (E(Y))2

= (Var(X) + (E(X))2 (Var(Y) + (E(Y))2 − (E(X))2 (E(Y))2

= ((Var(X)(Var(Y)) + (E(X))2 Var(Y) + (E(Y))2 Var(X).

(37)

Property II. For any two random variables X and Y , not necessarily independent, we have
the Cauchy Schwarz inequality

Cov(X,Y) ≤
√

Var(X)
√

Var(Y). (38)

Property III. As pointed out in Rudmin (2010), the total variance of a data set equals the
sample mean of the sample variances of the pooled sets (i.e., pool variance) plus the sample
variance of the sample means of the pooled sets. This result is achieved from the result below.

Result. Assume (Y j,k)1≤ j≤m,1≤k≤K to be a collection of data points with m,K ≥ 1. Consider the
quantities

X j :=
1
K

K∑
k=1

Y j,k, S 2
j :=

1
K

K∑
k=1

(Y j,k − X j)2, (39)

for any 1 ≤ j ≤ m, and let A := 1
mK
∑m

j=1
∑K

k=1 Y j,k. The following decomposition holds:

S 2 :=
1

mK

m∑
j=1

K∑
k=1

(Y j,k − A)2 =
1
m

m∑
j=1

S 2
j +

1
m

m∑
j=1

(X j − A)2. (40)

Proof. Fix 1 ≤ i ≤ n. Let D = (Y j,k)1≤ j≤m,1≤k≤K be a pooled data set assembled from data
sets D1 = (Y1,k)1≤k≤K , D2 = (Y2,k)1≤k≤K , . . . , Dm = (Ym,k)1≤k≤K . Note that the number of
measurements in the pooled set is mK.

The sample mean of data set D is

A =
1

mK

m∑
j=1

K∑
i=1

Y j,k =
1
m

m∑
j=1

1
K

K∑
k=1

Y j,k =
1
m

m∑
j=1

X j, (41)

and it thus equals the mean of means Xi j, i.e., the means of the smaller data sets Di1, . . . ,Dim.

A direct computation shows that the sample variance of data set D is given by

S 2 =
1

mK

m∑
j=1

K∑
k=1

(Y j,k − A)2 =
1

mK

m∑
j=1

K∑
k=1

Y2
j,k − A2 =

1
mK

Z2 − A2, (42)
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where Z2 =
∑m

j=1
∑K

k=1 Y2
j,k is the sum of squares. Note that

S 2
j =

1
K

K∑
k=1

(Y j,k − X j)2 =
1
K

K∑
k=1

Y2
j,k − X2

j =
1
K

Z2
j − X2

j , (43)

is the sample variance of the data set D j, where Z2
j =
∑K

k=1 Y2
j,k. Also, note that Z2 =

∑m
j=1 Z2

j

holds. Our goal is to compute S 2 via the means and variances of the smaller datasets. Indeed,

mKS 2 =

m∑
j=1

Z2
j − mKA2

= K
m∑

j=1

S 2
j + K

m∑
j=1

X2
j − mKA2 (44)

= K
m∑

j=1

S 2
j + K

m∑
j=1

(X j − A)2,

which completes the proof. □

B Autoregressive models
In this appendix, we give a brief description of AR(1) and AR(2) processes. In addition, we
provide the concept of an AR(1) process with linear growth.

B.1 The AR(1) process
The AR(1) process is given by the following time series:

Xt = c + aXt−1 + εt, (45)

where c ∈ R is refered to as the drift term and a ∈ R the intensity of the process. Further, it
is assumed that E (εt) = 0 and V (εt) = σ2

ε > 0 hold. Furthermore, we assume that the εt are
independently and identically distributed.

For stationary processes (which is the case for |a| < 1 (van der Vaart (2021)), an elementary
calculation shows that

µX B E(Xt) =
c

1 − a
. (46)

Regarding the autocovariance function, we have

γX(h) = Cov(Xt, Xt+h) =
a|h|

1 − a2σ
2
ε. (47)
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This model is stationary if and only if |a| < 1. If |a| < 1, then the autocovariance function
exponentially decreases in h. Therefore, the process is still considered to exhibit short-range
dependence.

Now, let us consider an AR(1) process with linear growth. That is,Xt = c + aXt−1 + εt

Yt = Xt + δt,
(48)

with X0 = 0 and δ , 0 the linear growth term. This yields the following properties

EYn = µX + δt, Var(Yn) = Var(Xn), Cov(Yt,Yt+h) = Cov(Xt, Xt+h). (49)

B.2 The AR(2) process
The AR(2) process is given by the following time series

Xt = c + a1Xt−1 + a2Xt−2 + εt. (50)

As for the AR(1) process, it is assumed that E (εt) = 0 and V (εt) = σ2
ε hold, and the εt are

assumed to be independently and identically distributed.

The corresponding characteristic equation is given by x2 − a1x − a2 = 0 (van der Vaart
(2021)). The AR(2) process is stationary if and only if the roots of the characteristic equation
are outside of the unit circle S 1 = {z ∈ C : |z| = 1}. In case of stationarity, the mean equals

µX B E(Xt) =
c

1 − a1 − a2
. (51)

We compute the autocovariance function for a stationary AR(2) process as follows:

γX(h) = Cov(Xt, Xt−h) = E(XtXt−h) − µ2
X = E ((c + a1Xt−1 + a2Xt−2 + εt) Xt−h) − µ2

X

= cµX + (a1 + a2 − 1) µ2
X + a1γX (h − 1) + a2γX (h − 2) + E (εtXt−h) (52)

= a1γX (h − 1) + a2γX (h − 2) + E (εtXt−h) .

Here,

E (εtXt−h) =

0 h , 0
σ2
ε h = 0.

(53)

So, for h , 0 we find

γX(h) = a1γX (h − 1) + a2γX (h − 2) . (54)

To solve this recurrence relation, we determine γX(0) and γX(1). Using γX(h) = γX(−h) for
all h ∈ Z, we find

γX(0) = a1γX (1) + a2γX (2) + σ2
ε,

γX(1) = a1γX (0) + a2γX (1) , (55)
γX(2) = a1γX (1) + a2γX (0) .
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By elementary algebraic manipulations, the following expressions follow

γX(0) =
1 − a2

1 + a2

1
(1 − a2)2 − a2

1

σ2
ε, (56)

γX(1) =
a1

1 + a2

1
(1 − a2)2 − a2

1

σ2
ε. (57)

C Theoretical results
In this appendix, we summarize the continuous analogs of the theory presented in this paper.

C.1 Details of averaging
Let g be the cumulative distribution function of a random variable X. The derivative of g
with respect to X is the probability density function g′. If f is any function for which the
expression

E[ f (X)] =
∫ ∞
−∞

f (x)g′(x)dx (58)

is finite, then we call E[ f (X)] the mean of f (X). When the integrand f (x) and the integrator
g′(x)dx are both smooth enough, the Riemann-Stieltjes integral is the unambiguous method
to compute the average. The Riemann-Stieltjes integral for an α-Hölder continuous function
f and a β-Hölder continuous function g is given by∫ b

a
f (x)dg(x), (59)

where it is necessary that α + β > 1 for the integral to be well-defined. This was shown by
Young (1936). However, when this condition fails, a more general notion of integration is
required, leading to the development of the theory of rough paths, see Friz and Hairer (2020).
In either case, unless the integral can be computed analytically, one requires approximations
to the integral. A natural way of approximating the integral is by returning to its definition.
Let Pn be an element of a sequence of partitions of the domain of integration (in this case,
[a, b]), given by

Pn = {a = x0 < x1 < . . . < xn = b}. (60)

The integral is defined to be the limit of the approximating sum S as the mesh size (the length
of the largest subinterval) tends to zero

S (Pn, f , g) =
n−1∑
i=0

f (ci)[g(xi+1) − g(xi)], (61)

where ci ∈ [xi, xi+1] is in the ith subinterval. This sum is an approximation to the integral and
can be evaluated independently of the regularity of f and g. In summary, the integral is given
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by ∫ b

a
f (x)dg(x) = lim

n→∞
S (Pn, f , g), (62)

where the regularity of f and g is required to evaluate the limit. While the definition of the
integral using this limit procedure is unambiguous, the sequence S (Pn, f , g) depends on the
partition and on the choice of ci.

C.2 Continuous version of filtering
In general, the variance of a stochastic process after convolution with a filter can be calculated
by using the formula below

Cov(Ys,Yt) =
∫ ∞
−∞

∫ ∞
−∞

f (s − u) f (t − v)Cov(Xu, Xv)dudv, (63)

with Yt denoting the convoluted process, i.e.,

Yt =

∫ ∞
−∞

f (t − s)Xsds, (64)

where Xt is the original process, f (t) is the filter function (also known as the impulse response
function), and Cov(Xs, Xt) is the covariance function of the original process. We refer to Faris
(2001) for more information on the latter.

As an example, take f (s) = 1[0,∆t](s)/∆t. This is a continuous version of the boxcar filter and
yields

Var(Yt) =
1
∆t

∫ t+∆t

t

∫ t+∆t

t
Cov(Xu, Xv)dudv. (65)

C.3 On the effect of coarse-graining
One common type of coarse-graining is temporal coarse-graining, which involves dividing
the time axis into intervals of length ∆t and replacing the original process X(t) with a new
process Y(t) that takes the value of X(t) at the beginning or the end of each interval. For
example, if X(t) is a Brownian motion, then Y(t) is a random walk with step size

√
∆t. Tem-

poral coarse-graining can reduce the variance of a stochastic process by smoothing out some
of the fluctuations and noise. However, the exact effect of temporal coarse-graining on the
variance depends on the autocorrelation function of the original process and the length of the
time interval.

D Python Code
For the implementation of the methods that we have described in Section 3 and Section 4, we
used Python. In particular, we use pandas (McKinney and Team (2015)) for data analysis,
numpy for basic array manipulation, scipy (Virtanen et al. (2020)) for its time series capa-
bilities, matplotlib (Hunter (2007)) for visualization and ruptures (Truong et al. (2020)) for
offline changepoint detection algorithms.
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SWI_VSL_main.py This code is used to create Figures 2 and 3.

1 import matplotlib.pyplot as plt
2 from SWI_VSL_functions import *
3

4 start_time = 0 # starting time in seconds [s]
5 end_time = 2*24*3600 # final elapsed time in seconds [s]
6 num_samples = 25 # number of measurements per time instance
7 uncorrelated = False
8

9 dt_mins = 60 # number of seconds in a minute
10 dt_quarters = 900 # number of seconds in a quarter
11 dt_hours = 3600 # number of seconds in an hour
12 dt_days = 24*3600 # number of seconds in a day
13

14 num_mins = int(np.floor(end_time/dt_mins)) # number of minutes in the
dataset

15 num_quarters = int(np.floor(end_time/dt_quarters)) # number of quarters in
the dataset

16 num_hours = int(np.floor(end_time/dt_hours)) # number of hours in the
dataset

17 num_days = int(np.floor(end_time/dt_days)) # number of days in the dataset
18

19 time = np.linspace(start=start_time , stop=end_time , num=num_mins , endpoint=
False) # time in seconds [s]

20 fw = int(dt_hours/dt_mins) # filter width used for time-averaging
21 win = sp.signal.windows.bartlett(fw)
22

23 np.random.seed(1)
24 epsi1ijk = np.random.normal(loc=0, scale=1, size=(num_mins, num_samples))
25 np.random.seed(2)
26 epsi2ijk = np.random.normal(loc=0, scale=1, size=(num_mins, num_samples))
27

28 if uncorrelated:
29 muij = 100+50*np.sin(np.sqrt(2)*np.pi*time / (5*dt_hours))
30 etaij = 100+50*np.cos(np.sqrt(2)*np.pi*time / (5*dt_hours))
31 else:
32 muij = ar1(a=.5, b=25, ym=100, Nt=num_mins , R=1)
33 etaij = ar1(a=.9, b=2, ym=100, Nt=num_mins, R=1)
34

35 Dijk = np.kron(muij, np.ones(num_samples)).reshape((num_mins , num_samples)) +
epsi1ijk

36 Wijk = np.kron(etaij, np.ones(num_samples)).reshape((num_mins , num_samples))
+ epsi2ijk

37

38 EDij = 1/num_samples * np.sum(Dijk, axis=1)
39 EWij = 1/num_samples * np.sum(Wijk, axis=1)
40

41 VarDij = 1/num_samples * np.sum((Dijk - np.kron(EDij, np.ones(num_samples)).
reshape((num_mins , num_samples)))**2, axis=1)

42 VarWij = 1/num_samples * np.sum((Wijk - np.kron(EWij, np.ones(num_samples)).
reshape((num_mins , num_samples)))**2, axis=1)

43

44 ctime = coarse_grain(time, fw)
45 Hi = coarse_grain(filter_data(EDij, win, fw), fw)
46 Vi = coarse_grain(filter_data(EWij, win, fw), fw)



Time Averages and the Totals in the Billing of Natural Gas 25

47

48 VarHi = coarse_grain(filter_data(VarDij, win, fw) + filter_data((EDij - np.
kron(Hi, np.ones(fw)))**2, win, fw), fw)

49 VarVi = coarse_grain(filter_data(VarWij, win, fw) + filter_data((EWij - np.
kron(Vi, np.ones(fw)))**2, win, fw), fw)

50

51 Ei = Hi*Vi
52 VarEi = VarHi*VarVi + (Hi**2)*VarVi + (Vi**2)*VarHi
53

54 TE = len(Ei)*fw*np.sum(Ei)
55 VarTE = (len(Ei)**2 * fw**2) * np.sum(VarEi)
56

57 print(TE, np.sqrt(VarTE))
58

59 plt.figure()
60 plt.plot(Ei)
61 plt.plot(np.sqrt(VarEi))
62 plt.show()

SWI_VSL_segmentation.py This code is used to create the figures in Section 5.
1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import scipy as sp
5 import ruptures as rpt
6 from SWI_VSL_functions import *
7

8 """Synthetic Data"""
9

10 T = 175000 # Final time in [s]
11 dtf = 5*2*30 # Finest time resolution
12 dtc = 15*2*dtf # 15min resolution
13 Nf = int(T/dtf) # Number of steps
14 Nc = int(T/dtc)
15 tf = np.linspace(0, T, Nf+1)
16 tc = np.linspace(0, T, Nc+1)
17

18 R = 5 # Number of realisations of AR(1) process
19

20 xf = np.zeros((Nf+1, R))
21 vol = np.zeros((Nf+1, R))
22 cal = np.zeros((Nf+1, R))
23 def mu_V(t, R):
24 return [46000 if t < int(Nf/3) else 55000 if t < int(2*Nf/3) else 60000]*

np.ones(R)
25

26 def mu_C(t, R):
27 return 37.1*np.ones(R)
28

29 # Parameters of the AR(1) process
30 a_vol = .5
31 var_vol = 25
32 measure_err_vol = 1
33 a_cal = .9
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34 var_cal = .2
35 measure_err_cal = 1
36 xf[0, :] = 0
37 """ Type A errors are measurement errors due to calibration of measurement

devices
38 Type B errors are measurement errors due to other sources and can be

correlated"""
39 e_vol = np.random.normal(0, var_vol, size=(Nf+1, R)) # Type B error for

volume measurements
40 em_vol = np.random.normal(0, measure_err_vol , size=(Nf+1, R)) # Type A error

for volume measurements
41 e_cal = np.random.normal(0, var_cal, size=(Nf+1, R)) # Type B error for

calorific measurements
42 em_cal = np.random.normal(0, measure_err_cal , size=(Nf+1, R)) # Type A error

for calorific measurements
43

44 # AR(1) process with parameter a and variance v_AR
45 for k in range(Nf):
46 xf[k+1, :] = a_vol*xf[k, :] + e_vol[k+1, :]
47 vol[k+1, :] = mu_V(k, R) + xf[k+1, :]
48

49 xf[k+1, :] = a_cal*xf[k, :] + e_cal[k+1, :]
50 cal[k+1, :] = mu_C(k, R) + xf[k+1, :]
51

52 vol = vol + em_vol
53 cal = cal + em_cal
54

55 sample_mean_vol = np.mean(vol, axis=1)
56 sample_mean_cal = np.mean(cal, axis=1)
57 sample_var_vol = np.var(vol, axis=1)
58 sample_var_cal = np.var(cal, axis=1)
59

60 ene = vol * cal # Energy
61 sample_mean_ene = np.mean(ene, axis=1)
62 sample_var_ene = np.var(ene, axis=1)
63 ene_mean = sample_mean_vol * sample_mean_cal
64 ene_var = sample_var_cal * sample_var_vol + sample_var_cal * (sample_mean_vol

)**2 + sample_var_vol * (sample_mean_cal)**2
65

66 fig, ax = plt.subplots(1, 2)
67 ax[0].plot(tf[1:], vol[1:, :], ’.’)
68 ax[0].set_xlabel(’time [s]’, fontsize=20)
69 ax[0].set_ylabel(’volume [m3]’, fontsize=20)
70 ax[0].tick_params(axis=’both’, labelsize=12)
71 ax[1].plot(tf[1:], cal[1:, :], ’.’)
72 ax[1].set_xlabel(’time [s]’, fontsize=20)
73 ax[1].set_ylabel(’calorific value [MJ/m3]’, fontsize=20)
74 ax[1].tick_params(axis=’both’, labelsize=12)
75

76 fig, ax = plt.subplots(1, 2)
77 ax[0].errorbar(tf[1:], sample_mean_vol[1:], sample_var_vol[1:], linestyle=’

None’, marker=’o’)
78 ax[0].set_xlabel(’time [s]’, fontsize=20)
79 ax[0].set_ylabel(’volume [m3]’, fontsize=20)
80 ax[0].tick_params(axis=’both’, labelsize=12)
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81 ax[1].errorbar(tf[1:], sample_mean_cal[1:], sample_var_cal[1:], linestyle=’
None’, marker=’o’)

82 ax[1].set_xlabel(’time [s]’, fontsize=20)
83 ax[1].set_ylabel(’calorific value [MJ/m3]’, fontsize=20)
84 ax[1].tick_params(axis=’both’, labelsize=12)
85

86 fig, ax = plt.subplots(1, 3)
87 ax[0].errorbar(tf[1:], sample_mean_ene[1:], sample_var_ene[1:], linestyle=’

None’, marker=’o’)
88 ax[0].set_xlabel(’time [s]’, fontsize=20)
89 ax[0].set_ylabel(’energy [MJ]’, fontsize=20)
90 ax[0].tick_params(axis=’both’, labelsize=12)
91 ax[1].errorbar(tf[1:], ene_mean[1:], ene_var[1:], linestyle=’None’, marker=’o

’)
92 ax[1].set_xlabel(’time [s]’, fontsize=20)
93 ax[1].set_ylabel(’energy [MJ]’, fontsize=20)
94 ax[1].tick_params(axis=’both’, labelsize=12)
95 ax[2].errorbar(tf[1:], np.abs(sample_mean_ene[1:] - ene_mean[1:]), np.abs(

sample_var_ene[1:] - ene_var[1:]), linestyle=’None’, marker=’o’)
96 ax[2].set_xlabel(’time [s]’, fontsize=20)
97 ax[2].set_ylabel(’energy [MJ]’, fontsize=20)
98 ax[2].tick_params(axis=’both’, labelsize=12)
99

100 """Real Synthetic Data"""
101

102 df = pd.read_csv(’test_data.csv’)
103 df[’energy [MJ]’] = df.loc[:, ’volume [m3]’] * df.loc[:, ’calorific_value [MJ

/m3]’]
104 FW = int(250) # filter width
105 win = sp.signal.windows.hann(FW)
106

107 # Changepoint detection
108 CPdetect = False
109 if CPdetect:
110 # Changepoint detection with the Pelt search method
111 model="rbf"
112 points = np.array(df.loc[:, ’energy [MJ]’])
113 algo = rpt.Pelt(model=model).fit(points)
114 result = algo.predict(pen=10)
115 rpt.display(points, result, figsize=(10, 6))
116 plt.title(’Pelt Search Method’, fontsize=26)
117

118 # Changepoint detection with the Binary Segmentation search method
119 model = "l2"
120 algo = rpt.Binseg(model=model).fit(points)
121 my_bkps = algo.predict(n_bkps=10)
122 # show results
123 rpt.show.display(points, my_bkps, figsize=(10, 6))
124 plt.title(’Binary Segmentation Search Method’, fontsize=26)
125

126 # Changepoint detection with window-based search method
127 model = "l2"
128 algo = rpt.Window(width=40, model=model).fit(points)
129 my_bkps = algo.predict(n_bkps=10)
130 rpt.show.display(points, my_bkps, figsize=(10, 6))
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131 plt.title(’Window-Based Search Method’, fontsize=26)
132

133 # Changepoint detection with dynamic programming search method
134 model = "l1"
135 algo = rpt.Dynp(model=model, min_size=3, jump=5).fit(points)
136 my_bkps = algo.predict(n_bkps=10)
137 rpt.show.display(points, my_bkps, figsize=(10, 6))
138 plt.title(’Dynamic Programming Search Method’, fontsize=26)
139 plt.show()
140

141

142 mean_vol , data_mean_vol , diff = mean_data_test(df.loc[:, ’volume [m3]’], FW)
143 fig, ax = plt.subplots(1,2)
144 ax[0].plot(mean_vol[:-1])
145 ax[0].plot(data_mean_vol[1:-1])
146 ax[0].set_title(’Moving average’)
147 ax[1].plot(diff[1:-1])
148 ax[1].set_title(’Difference between Filter+CG and ordinary averaging’)
149

150 # Convolution with filter
151 volume_filt = filter_data(df.loc[:, ’volume [m3]’], win, FW)
152 calorific_filt = filter_data(df.loc[:, ’calorific_value [MJ/m3]’], win, FW)
153 energy_filt = filter_data(df.loc[:, ’energy [MJ]’], win, FW)
154 time_filt = filter_data(df.loc[:, ’time [s]’], win, FW)
155

156 # Remove filter boundary
157 volume_filt = remove_filter_boundary(volume_filt , FW)
158 calorific_filt = remove_filter_boundary(calorific_filt , FW)
159 energy_filt = remove_filter_boundary(energy_filt , FW)
160 time_filt = remove_filter_boundary(time_filt , FW)
161

162 # Coarse graining data
163 volume_filt_cg = coarse_grain(volume_filt , FW)
164 calorific_filt_cg = coarse_grain(calorific_filt , FW)
165 energy_filt_cg = coarse_grain(energy_filt , FW)
166 time_filt_cg = coarse_grain(time_filt , FW)
167

168 # Plotting of the original data and the filtered data
169 fig, ax = plt.subplots(1, 2)
170 ax[0].plot(df.loc[:, ’time [s]’], df.loc[:, ’volume [m3]’])
171 ax[0].plot(time_filt , volume_filt)
172 ax[0].set_xlabel(’time [s]’, fontsize=22)
173 ax[0].set_ylabel(’volume [m3]’, fontsize=22)
174 ax[0].tick_params(axis=’both’, labelsize=14)
175 ax[1].plot(df.loc[:, ’time [s]’], df.loc[:, ’calorific_value [MJ/m3]’])
176 ax[1].plot(time_filt , calorific_filt)
177 ax[1].set_xlabel(’time [s]’, fontsize=22)
178 ax[1].set_ylabel(’calorific value [MJ/m3]’, fontsize=22)
179 ax[1].tick_params(axis=’both’, labelsize=14)
180

181 # Plotting the original and the filtered data
182 fig, ax = plt.subplots(3, 1)
183 ax[0].plot(df.loc[:, ’time [s]’], df.loc[:, ’energy [MJ]’])
184 ax[0].set_ylabel(’energy [MJ]’, fontsize=20)
185
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186 ax[1].set_ylabel(’energy [MJ]’, fontsize=20)
187 ax[1].plot(time_filt , energy_filt)
188

189 ax[2].set_xlabel(’time [s]’, fontsize=20)
190 ax[2].set_ylabel(’energy [MJ]’, fontsize=20)
191 ax[2].plot(time_filt , energy_filt)
192

193 # Plotting data for the same filter at different filter widths
194 fig, ax = plt.subplots(1, 1)
195

196 FW1, FW2, FW3, FW4 = 20, 100, 500, 2500
197 win1 = sp.signal.windows.boxcar(FW1)
198 win2 = sp.signal.windows.boxcar(FW2)
199 win3 = sp.signal.windows.boxcar(FW3)
200 win4 = sp.signal.windows.boxcar(FW4)
201 t1 = remove_filter_boundary(sp.signal.convolve(df.loc[:, ’time [s]’], win1,

mode=’same’) / sum(win1), FW1)
202 t2 = remove_filter_boundary(sp.signal.convolve(df.loc[:, ’time [s]’], win2,

mode=’same’) / sum(win2), FW2)
203 t3 = remove_filter_boundary(sp.signal.convolve(df.loc[:, ’time [s]’], win3,

mode=’same’) / sum(win3), FW3)
204 t4 = remove_filter_boundary(sp.signal.convolve(df.loc[:, ’time [s]’], win4,

mode=’same’) / sum(win4), FW4)
205 e1 = remove_filter_boundary(sp.signal.convolve(df.loc[:, ’energy [MJ]’], win1

, mode=’same’) / sum(win1), FW1)
206 e2 = remove_filter_boundary(sp.signal.convolve(df.loc[:, ’energy [MJ]’], win2

, mode=’same’) / sum(win2), FW2)
207 e3 = remove_filter_boundary(sp.signal.convolve(df.loc[:, ’energy [MJ]’], win3

, mode=’same’) / sum(win3), FW3)
208 e4 = remove_filter_boundary(sp.signal.convolve(df.loc[:, ’energy [MJ]’], win4

, mode=’same’) / sum(win4), FW4)
209 ax.plot(df.loc[:, ’time [s]’], df.loc[:, ’energy [MJ]’], label=’Truth’)
210 ax.set_ylabel(’energy [MJ]’, fontsize=20)
211 ax.plot(t1, e1, label=’Boxcar 20’)
212 ax.plot(t2, e2, label=’Boxcar 100’)
213 ax.plot(t3, e3, label=’Boxcar 500’)
214 ax.plot(t4, e4, label=’Boxcar 2500’)
215 ax.legend(fontsize=18)
216 ax.set_title(’Fixed filter averaging with different filter widths’, fontsize

=24)
217

218 # Plotting data for different filters at the same width
219 fig, ax = plt.subplots(1, 1)
220 FWt = 100
221 win1 = sp.signal.windows.boxcar(FWt)
222 win2 = sp.signal.windows.gaussian(FWt, 7)
223 win3 = sp.signal.windows.bartlett(FWt)
224 win4 = sp.signal.windows.exponential(FWt)
225 t1 = remove_filter_boundary(sp.signal.convolve(df.loc[:, ’time [s]’], win1,

mode=’same’) / sum(win1), FWt)
226 t2 = remove_filter_boundary(sp.signal.convolve(df.loc[:, ’time [s]’], win2,

mode=’same’) / sum(win2), FWt)
227 t3 = remove_filter_boundary(sp.signal.convolve(df.loc[:, ’time [s]’], win3,

mode=’same’) / sum(win3), FWt)
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228 t4 = remove_filter_boundary(sp.signal.convolve(df.loc[:, ’time [s]’], win4,
mode=’same’) / sum(win4), FWt)

229 e1 = remove_filter_boundary(sp.signal.convolve(df.loc[:, ’energy [MJ]’], win1
, mode=’same’) / sum(win1), FWt)

230 e2 = remove_filter_boundary(sp.signal.convolve(df.loc[:, ’energy [MJ]’], win2
, mode=’same’) / sum(win2), FWt)

231 e3 = remove_filter_boundary(sp.signal.convolve(df.loc[:, ’energy [MJ]’], win3
, mode=’same’) / sum(win3), FWt)

232 e4 = remove_filter_boundary(sp.signal.convolve(df.loc[:, ’energy [MJ]’], win4
, mode=’same’) / sum(win4), FWt)

233 ax.plot(df.loc[:, ’time [s]’][400:500], df.loc[:, ’energy [MJ]’][400:500],
label=’Truth’)

234 ax.set_ylabel(’energy [MJ]’, fontsize=20)
235 ax.plot(t1[350:450], e1[350:450], label=’Boxcar 100’)
236 ax.plot(t2[350:450], e2[350:450], label=’Gaussian 100’)
237 ax.plot(t3[350:450], e3[350:450], label=’Bartlett 100’)
238 ax.plot(t4[350:450], e4[350:450], label=’Exponential 100’)
239 ax.legend(fontsize=18)
240 ax.set_title(’Fixed filter width averaging with different filters’, fontsize

=24)
241

242

243 # Plotting original data, mean and variance
244 fig, ax = plt.subplots(3, 1)
245 ax[0].plot(usable_data(df.loc[:, ’time [s]’], FW), usable_data(df.loc[:, ’

energy [MJ]’], FW))
246 ax[0].set_xlim(0, T)
247 ax[0].set_ylabel(’energy [MJ]’, fontsize=20)
248 ax[1].plot(time_filt , remove_filter_boundary(pointwise_mean_data(df.loc[:, ’

energy [MJ]’], win, FW), FW))
249 ax[1].set_xlim(0, T)
250 ax[1].set_ylabel(’energy [MJ]’, fontsize=20)
251 ax[2].plot(time_filt , remove_filter_boundary(usable_data(df.loc[:, ’energy [

MJ]’], FW) - pointwise_mean_data(df.loc[:, ’energy [MJ]’], win, FW), FW)
)

252 ax[2].set_xlim(0, T)
253 ax[2].set_ylabel(’energy [MJ]’, fontsize=20)
254 ax[2].set_xlabel(’time [s]’, fontsize=20)
255

256 plt.show()

SWI_VSL_functions.py This code contains general functions which are called upon in the
codes SWI_VSL_main.py and SWI_VSL_segmentation.py.

1 import scipy as sp
2 import numpy as np
3

4 """Functions"""
5 def usable_data(data, filterwidth):
6 N_data_points = len(data)
7 N_intervals = int(N_data_points/filterwidth)
8 return data[:N_intervals*filterwidth]
9 def filter_data(data, window, filterwidth):

10 data = usable_data(data, filterwidth)
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11 data_filt = sp.signal.convolve(data, window, mode=’same’) / sum(window)
12 return data_filt
13 def coarse_grain(data, filterwidth):
14 return data[int(filterwidth/2)::filterwidth]
15 def remove_filter_boundary(data, filterwidth):
16 return data[int(filterwidth/2):-int(filterwidth/2)]
17 def pointwise_mean_data(data, window, filterwidth):
18 data = usable_data(data, filterwidth)
19 data_filt = filter_data(data, window, filterwidth)
20 data_filt_cg = coarse_grain(data_filt , filterwidth)
21 pointwise_mean = np.kron(data_filt_cg , np.ones(filterwidth))
22 return pointwise_mean
23 def mean_data_test(data, filterwidth):
24 data = usable_data(data, filterwidth)
25 mean_dat = [1/filterwidth * sum(data[i:i+filterwidth]) for i in range(0,

len(data), filterwidth)]
26 boxcar = sp.signal.windows.boxcar(filterwidth)
27 data_filt = sp.signal.convolve(data, boxcar, mode=’same’) / sum(boxcar)
28 data_mean = data_filt[::filterwidth]
29 difference = mean_dat - data_mean
30 return mean_dat, data_mean , difference
31 def auto_corr(data):
32 result = sp.signal.correlate(data, data, mode=’full’)
33 return result[result.size/2:]
34

35 def ar1(a, b, ym, Nt, R=1):
36 # a is the coefficient of the AR(1) process
37 # b is the variance of the normal distributed errors
38 # Nt is the number of time points
39 # R is the number of realisations
40 if R == 1:
41 e = np.random.normal(loc=0, scale=b, size=Nt+1)
42 x = np.zeros(Nt+1)
43 y = np.zeros(Nt+1)
44 for k in range(Nt):
45 x[k+1] = a*x[k] + e[k]
46 y[k+1] = ym + x[k+1]
47 else:
48 e = np.random.normal(loc=0, scale=b, size=(Nt+1, R))
49 x = np.zeros((Nt+1, R))
50 y = np.zeros((Nt+1, R))
51 for k in range(Nt):
52 x[k+1, :] = a*x[k, :] + e[k+1, :]
53 y[k+1, :] = ym*np.ones(R) + x[k+1, :]
54 return y[:-1]

E Synthetic data set

In this appendix, we show a figure of the synthetic data provided by VSL. This data set is
used for the energy time series in Section 5.
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Figure 10: Synthetic data set provided by VSL with a time series of volume (left) and a time
series of calorific value (right) over a time span of two days. See Figure 2 for a time series of
volume and caloric value which are closer to reality.
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