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Abstract
The Dutch energy grid is increasingly congested, threatening stable future distribution
of energy throughout the country. The purpose of this project is to investigate so-called
energy hubs: small, local nexuses that autonomously control their own energy demand,
supply, storage, and conversion. Two use cases are explored independently. The first
one involves one energy hub and attempts to optimize cost expectations based on uncer-
tain fluctuations in energy dynamics. The other model describes a network of hubs and
explores the limits of using a convex optimization problem.

Keywords: Energy hub, multi-commodity, convex optimization, stochasticity.

1 Introduction
The Dutch energy grid is increasingly congested, threatening stable future distribution of
energy throughout the country. The situation is illustrated in Figure 1, with limitations on
injection of energy in Figure 1a, and on withdrawal in Figure 1b. In both figures, the country
is predominantly colored red, indicating no more space for injection and withdrawal, respec-
tively.

The purpose of this project and paper is to investigate so-called energy hubs: small, lo-
cal nexuses that largely control their own energy demand, supply, storage, and conversion.
They can vary in, e.g., size, composition, and availability of assets (batteries, solar panels,
hydrogen cells, etc). Hubs can be interconnected, enabling them to exchange energy locally
and lessening dependency on the main network. The overarching idea of using hubs is that
they might help reduce congestion of the main grid by creating smaller, local networks. Po-
tentially, the use of hubs may even facilitate a redesign of the current country-wide main
infrastructure.

John Poppelaars, founder of Doing The Math (DTM) provided us with the following
guidelines. We need to design a model adaptable to evolving energy systems, considering
factors like energy flows, investments, carbon emissions, and grid independence supporting
decisions on each level. Further, we need to balance model complexity for practical utility,
capturing nuances of each level for efficient computation and decision-making. Finally, we
aim to explain how the model(s) will provide actionable insights for investors and policymak-
ers in the planning, development, and optimization of multi-commodity energy networks. A
discussion among the team revealed that these guidelines required further scoping, as they
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(a) Injection limitations (b) Withdrawal limitations

Figure 1: White-yellow-orange-red: in increasing order of congestion. Source: Netbeheer
Nederland (2024).

were too broad to tackle in the time frame we had available. In the end, we settled on work-
ing out the following scenarios:

1. A stochastic model for a hub connecting companies that are supplied with wind and
solar power, electricity from the grid, and hydrogen via a pipeline. Additionally, they
have a shared battery and shared storage for hydrogen. The main goal was to find out
to what extent dynamic control of energy buying and selling may reduce the costs of
energy, as compared to static control. This is covered in Section 2.

2. A convex model for a hub with wind and solar power, unlimited electricity from the
grid, and a battery. We discuss this in Section 3.1. We also consider the finite access to
electricity in Section 3.2.

3. A convex model as in Section 2, but with several hubs (Section 3.3).

During our initial discussion, we had several promising ideas for potential future projects.
We collected these in Section 4.

2 Stochastic electricity and hydrogen model
We consider a hub with companies that are supplied by 1) wind and solar power, 2) elec-
tricity from the grid, and 3) hydrogen via a pipeline. For energy management purposes, the
companies share a battery in order to provide power in times when electricity from the grid
is relatively expensive (due to high grid load, e.g., in the middle of the day). Furthermore,
the companies share a hydrogen storage tank to supply hydrogen as a substitute for natural
gas or to convert hydrogen into power through an electrochemical reaction known as reverse
electrolysis. The battery can be filled in times when wind and solar power supply exceeds
demand or when grid electricity is relatively cheap. The dynamics of the battery status, from
hour to hour, is modeled as



Multi-commodity Energy Networks 3

xb
k+1 = xb

k + ∆t(u1,k − u2,k + β1γ3u3,k − u4,k + sk − dk − αk) + σ
√
∆tεk. (1)

Here k ∈ [1, . . . ,N] is an index ranging from hour 1 to hour N (the time interval corre-
sponding to k = 1 is 00.00 to 01.00 hours), ∆t the time interval, xb the battery status which is
bounded by a minimum and a maximum (xb

k ∈ [bmin, bmax]), u1 ∈ [0, umax
1 ] the power bought

from the grid, u2 ∈ [0, umax
2 ] the power sold to the grid, u3 ∈ [0, umax

3 ] the hydrogen converted
to power with efficiency β1, u4 conversion of power to hydrogen, s the supply from wind and
solar power, d the power demand from the companies, α energy leakage from the battery. The
uncertain error ε represents the difference between predicted and realized battery status due
to uncertainty in demand and supply, and this error is assumed to be independently normally
distributed. This is a standard assumption in stochastic optimization, although another type
of distribution can also be inserted. The error is scaled with variance σ2. The hydrogen level
dynamics are modeled as

xH
k+1 = xH

k + ∆t(β2(xb
k+1 − bmax − γ4u4,k) − u3,k + u5,k − u6,k). (2)

Here xH is the hydrogen level which is bounded by a minimum and a maximum (xH
k ∈

[Hmin,Hmax]). The term xb
k+1 − bmax represents the overflow rate of the battery that is con-

verted into hydrogen with efficiency β2. Furthermore, u5 denotes the hydrogen buying rate,
and u6 denotes the selling rate.

2.1 Costs and revenues

The expectancy of the total costs that should be minimized is modeled as

E

−c1xb
N − c5xH

N + ∆t
N−1∑
k=1

c1,ku1,k − c2,ku2,k + c5,ku5,k − c6,ku6,k

 . (3)

The first two terms denote the revenues associated with having the power and hydrogen in
store at the end of the day. The terms behind the summation denote running costs that are
made each hour. Here, the c values denote the buying and selling prices of electricity and
hydrogen.

The symbols and nominal values used are presented in Table 1.

2.2 Dynamic programming

The goal is to determine a policy that maximizes value, which is defined by the expected
revenues J(xg

N) for a battery at end time N∆t, minus the compounded running costs Lk. The
associated control problem is to find a policy that minimizes expression (3), which can be
written as

E

J(xg
N) −

N−1∑
k=0

Lk(gk(xg
k)))∆t

 . (4)
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Symbol Description Value(s) Unit
c1 price electricity bought from grid 1 [euro kWh−1]
c2 revenues electricity sold to grid 0.8 [euro kWh−1]
c5 price hydrogen bought 1 [euro kg−1]
c6 price hydrogen sold 0.8 [euro kg−1]
c7 costs associated with unmet power demand 100 [euro kW−1]
s supply rate from PV and turbines [dataset] [kW ]
d demand from companies [dataset] [kW]

u1 ∈ [0, umax
1 ] electricity buying rate from grid [0,2] [kW]

u2 ∈ [0, umax
2 ] electricity selling rate to grid [0,2] [kW]

u3 ∈ [0, umax
3 ] hydrogen conversion to power - [kWh kg−1]

u4 ∈ [0, umax
4 ] power conversion to hydrogen - [kWh−1 kg]

u5 ∈ [0, umax
5 ] hydrogen buying rate - [kg−1h−1]

u6 ∈ [0, umax
6 ] hydrogen selling rate - [kg−1h−1]

N number of hours in simulation 24 [h]
xb ∈ [bmin, bmax] battery level [1,24] [kWh]

xH ∈ [Hmin,Hmax] hydrogen level - [kg]
α battery leakage rate 0.001 [kW h−1]
β1 efficiency conversion hydrogen to power - [-]
β2 efficiency conversion power to hydrogen - [-]
γ3 conversion coefficient hydrogen to power - [kWh kg−1]
γ4 conversion coefficient power to hydrogen - [kg kWh−1]
σ state noise standard deviation 0.003 [kW]
∆t time interval 1 [h]

Table 1: Symbols used in the electricity hub model, together with their units and values used
in the simulations.
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for any given state xk, at any time k, over all control laws (gk)k∈K such that gk is in an admis-
sible set Gk (defined in Table 1 as [0, umax

(·) ]). Here xg denotes [xb, xH] under policy g. We use
G to denote the collection of admissible sets (Gk)k∈K.

2.3 Solution of optimization problem for only electricity
We consider the solution of equation 4 for a hub only regarding power management, ignoring
the hydrogen aspects and taking ∆t = 1 hour. By doing so, equation (1) reduces to

xb
k+1 = xb

k + u1,k − u2,k + sk − dk − αk + σ
√
∆tεk. (5)

We define the following constraint in order to avoid negative battery charge, Exb
k+1 ≥ bmin,

which translates into u1,k ≥ bmin − xk + u2,k − dk + dk + αk.
The expectancy of the total costs (3) reduces to

E

−c1xb
N + ∆t

N−1∑
k=1

c1,ku1,k − c2,ku2,k

 . (6)

The peak prices in electricity during 12.00-18.00 hours are modeled as

c1,k = 1k∈[1,12]⊕[19,24] + 2 1k∈[13,18], (7)

and furthermore, the selling price is assumed to be 80% of the buying price: c2,k = 0.8c1,k ∀k.
The control problem of minimizing (6) was solved using a dynamic programming method

as described in van Mourik et al. (2023). The state space was made discrete into 300 parts.
The dynamics of d and s was an hourly time series data set that was provided by the DTM
company.

2.4 Results
Figure 2 shows the dynamics of battery level, resulting from arbitrarily selected constant
buying and selling rates and supply and demand dynamics. In this case, the buying and
selling rates are not optimized. It can be observed that the battery empties over time from 24
to 17 KWh. This is due to demand being higher than supply plus the net difference between
buying and selling.

Figure 3 shows the dynamics of battery level resulting from constant buying and selling
rates optimized with respect to the cost function (6). It is observed that the buying and selling
rates are very close to zero, and as a result, the battery is much more depleted compared to
Figure 2.

Figure 4 shows the optimal dynamic control of buying and selling rates as a function of
the battery state and time with respect to cost function (6).

It is observed that there is a vertical band between 12 and 18 hours in which there is prac-
tically no buying due to high electricity prices. For the same reason, the controller prescribes
a maximum selling rate during these hours, except when the battery is nearly empty. The ex-
pected running costs for the three cases described above (arbitrarily selected constant input,



6 SWI 2024 Proceedings

Figure 2: Dynamics of battery level for arbitrarily selected constant buying and selling rates.
Top left: battery level. Top right: constant buying and selling rates. Bottom left: supply and
demand rates.
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Figure 3: Dynamics of battery level for optimal constant buying and selling rates. Left top:
battery level. Right top: constant buying and selling rates. Left bottom: supply and demand
rates.

optimized constant input, and optimized dynamic input) are 18, 12, and 6 Euro, respectively.
The large relative differences amounts indicate that dynamic optimization might considerably
improve cost efficiency in the daily operational management of an energy hub.

3 Convex Energy hub model
Another model that does not incorporate a stochastic approach is laid down here. The idea
behind this model relies on the neat properties of convex functions and linear programming.
Different scenarios depending on the type of hub that we want to create are discussed here.

3.1 Infinite supply of energy from provider
Suppose that the contract with the energy provider allows for very large amounts of energy to
be taken out of the grid. Thus, we allow for very large u1,k. This assumption is posed in order
to guarantee that no matter how big the desired outcome is, the production is able to follow.
In the next Section 3.2, we will drop this assumption and consider the more likely scenario
of a capped subscription to the energy grid. Still, it is important to consider this “infinite”
energy provider case as it can apply to multiple scenarios, including those with companies
that are mostly energy-autonomous but which, once in a while, might need some unknown
energy input from the grid.
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Figure 4: Optimal dynamic control of buying and selling rates as a function of the battery
state and time. Left: buying rate as a function of time and state. Right: selling rate as a
function of time and state.

We start by using the same symbols as in Section 2. The desired cost function must be
convex and must minimize the costs associated with using the provider’s electricity while
introducing a penalty for using too large quantities of the provider’s supply.

Problem formulation:

for n = 1, . . . ,K

min
u1,k

K∑
k=n

A(u1,k), (8)

where A is a penalizing function for large u1. The constraints on the problem are

wk + xb
k+1 ≤ xb

k + sk − dk + u1,k

xH
k+1 = xH

k + βwk
with



0 ≤ u1 ≤ umax
1

0 ≤ xb ≤ bmax

0 ≤ w
0 ≤ xH ≤ Hmax

0 ≤ d

(9)

where wk is the electricity quantity going from or to the hydrogen plant. Further, β reflects
the conversion factor from electricity to hydrogen.

Keeping the problem convex

As long as we choose A to be convex, the problem is itself convex. Examples of a convex
penalising function is the exponential function, which conveniently increases very rapidly.
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Figure 5: Diagram of basic relationships between hub components. Clockwise from the
battery icon, we have the state’s grid, the local power supply such as wind and PV, the end
product, and a storage component such as a battery.

3.2 Finite supply of energy

for n = 1, ...K

max
u1,k

K∑
k=n

χkdk −

K∑
k=n

c1,ku1,k, (10)

where the linear relationship can be replaced with a convex one. The constraints on the
problem are

wk + xb
k+1 ≤ xb

k + sk − dk + u1,k

xH
k+1 = xH

k + βwk
with



0 ≤ u1

0 ≤ xb ≤ bmax

0 ≤ w
0 ≤ xH ≤ Hmax

0 ≤ d

(11)

Note: The reason why the above inequality relating w, xb, s, d and u1 is not strict is that the
battery has finite capacity and excess supply goes unused (this is called curtailment. This is
in the hope that the excess can be managed in a number of different ways. Examples include
the selling of surplus, as well as the production of other byproducts (carbon sequestration,
hydrogen production through electrolysis, etc.). An equality would mean that gk can become
negative, allowing electricity to be sold back to the main network.
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Discussion on the choice of functions

We have assumed here a linear behavior for the revenue (e.g., χkdk), but perhaps the rela-
tionship is more complex. This is no problem as long as we choose a concave function. We
theorize here that another function could be chosen, such as cot(·) or

√
·. These are con-

cave, and their rate of increase is not high. This resonates with most business practices (the
production curve will plateau after some production threshold).

3.3 Introducing several hubs
Extending the model to incorporate different hubs can be done precautiously. The following
is a model that connects different hubs with indices i ∈ I possibly with cables in between
each other, which nonetheless demands some investments as cables are expensive. In this
way, surplus energy could be shared without relying extensively on the external grid. To
this end, a common battery is required to act as the main nexus of electricity exchange. As
batteries are expensive, this incentivizes different hubs to invest jointly in one battery that is
consequently installed on one of the hubs’ sites. It should be accessible to the other hubs so
that they can store or access surplus energy before resorting to the grid. A diagram showing
how different hubs intertwine is shown in Figure 6.

To model this, we again attempt to create a convex problem. We tweak the original
notation slightly and denote δik to be the amount of electricity that hub i asks at time k to
have. Further, denote pi

k to be the amount of energy surplus that hub i generates and has no
need of. We want to maximize the gain so that the following constraints are satisfied:

si
k + ui

1,k + δ
i
k = di

k + pi
k i ∈ I,

xb
k+1 = xb

k −
∑

i

δik +
∑

i

pi
k.

Now, finding the revenue/cost function to maximize is harder as we have to encompass multi-
ple hubs. A simple approach that we put forward here is maximizing the sum of revenue-cost
for each hub, e.g.,

max
ui

1,k

∑
i

K∑
k=n

χkdi
k −

K∑
k=n

ckui
1,k. (12)

Upon seeing this formulation, one might think that this shared-battery model is suboptimal
to each having their own batteries. Indeed, it is well known that the maximum of a sum is
smaller than the sum of maxima. Equation 13 then would yield a result less than or equal to
the sum of each maximization. In the case of i = 1, 2,

max
ui

1,k

2∑
i=1

K∑
k=n

χkdi
k −

K∑
k=n

ckui
1,k ≤

2∑
i=1

max
ui

1,k

K∑
k=n

χkdi
k −

K∑
k=n

ckui
1,k

 . (13)

The question arises: Why not maximize each hub individually again and then sum to obtain
the gain? The answer is that the ui

1,k over which we optimize are dependent on how much
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Figure 6: Diagram of basic relationships between two hubs and their components.
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energy δik they can withdraw from the common battery. Evidently, we cannot optimize each
hub individually without taking into account the other hubs.

Note: A natural question comes into mind. What if, in a non-collaborative setting (e.g.,
each hub has its own battery), one hub makes more than in a collaborative setting? How do
we prevent unfair scenarios in which collaborating helps some hubs more than others? To
make it concrete, consider a non-collaborative scenario (call it Scenario 1) in which hub A
makes 100e profit and hub B makes 10e profit. The difference in profit might be due to a
bigger energy park within hub A or a bigger battery capacity. Suppose that in a collaborative
scenario, where batteries are shared (call it Scenario 2), hub A makes 90e profit whilst hub
B makes 30e. There is indeed an overall gain to have collaborated, in the sense that added
together, the gain is 120e instead of 110e. But hub A has not benefited from having collab-
orated. This type of scenario requires compensation towards hubs that would have received
more if they had functioned alone. A simple suggestion is that the profit from having collab-
orated should be split proportionately to the participation of each hub. Practically, it could be
done by looking at the overall profit in Scenario 1 and in Scenario 2 and splitting the differ-
ence in overall gain so that even each hub obtains at least what they would have obtained if
they had functioned alone. In this example, let hub A receive at least 100e, which means hub
B obtains at most 20e, and the remaining surplus can be split further between the two parties.
In this way, each hub receives more than if they had functioned alone.

Nevertheless, how can we be certain that collaborating would lead to an increase in wealth
and not to a decrease? The intuitive answer to this is that instead of buying from the grid,
one can use from the battery and pay smaller costs than when using from the grid. It seems
intuitive that it is beneficial, but it needs more formal proof of it. For example, what if it costs
more to produce local energy than to use the grid? Then, perhaps each hub will preferentially
use the grid, in which case, in the worst case, the gain will be the same as in Scenario 1.
Therefore, we need to make sure that the costs associated with the running and maintenance
of the local energy hubs warrant their existence–future work needs to incorporate weigh-in
data regarding the overall costs of running a local nexus.

4 Conclusions

As it stands, this paper has developed two energy models that could help direct future com-
panies in making decisions that can have a major economic as well as environmental impact.
For the model of stochastic electricity demand and the basic scenario where electricity can be
stored, bought, or sold, the expected net electricity costs for three cases (arbitrarily selected
constant input, optimized constant input, and optimized dynamic input) are 18, 12, and 6
Euro, respectively. The large relative differences amounts indicate that dynamic optimization
might considerably improve cost efficiency in the daily operational management of an energy
hub. Of course, at this point, the values are not yet realistic, but the case could form a starting
point for a more in-depth analysis in a follow-up study.

This work focused on modeling rather than simulation, mainly because it would allow a
better grasp of the real stakes. Therefore, further work could be done to investigate the second
model through a simulation study and see how it compares to the first model. Furthermore,
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future research should be directed to combining both models in order to bring stochasticity
into the multi-commodity and multi-hub model. Lastly, we restricted our work to energy
hubs that have a predetermined set of assets (e.g., the number of solar panels and windmills).
Future research can explore which combinations of assets are optimal given the local average
weather and climate, as well as the desired production rates.

The research done during the SWI event raised the interest of Doing The Math to further
explore the directions taken and see if the suggestions for further research could be turned
into, for example, thesis subjects. Next, applying the ideas in this paper to real-life situa-
tions with actual data could lead to new insights from which distribution system operators
could benefit as it will direct their choices to enable energy hubs and reduce the impact of
congestion on society.
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