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Abstract

We examine the optimization of order fulfillment strategies employed by
IKEA for orders placed via its online webshop. IKEA currently utilizes a strat-
egy whereby orders are assigned to local stores or warehouses based on the
minimization of picking and delivery costs without consideration for the poten-
tial impact of future orders. This approach often leads to the early exhaustion
of order picking capacity in several stores, resulting in increased shipping costs
and, in some cases, the inability to fulfill orders as orders received later in the
day are assigned to more distant stores. We propose alternative strategies aimed
at enhancing the robustness of IKEA’s order allocation process against incom-
ing future orders. Our solutions include a heuristic approach that introduces a
penalty for selecting warehouses with low residual capacity, a linear program-
ming model that integrates predictions of future orders, and a neural network
that is trained on optimal (offline) solutions derived from historical order allo-
cation data. We show that these proposed methods can significantly reduce both
the total fulfillment costs and the proportion of orders that cannot be fulfilled,
offering a more efficient and reliable order fulfillment system for IKEA.
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1 Introduction

1.1 Problem Background

Large e-commerce retailers often have multiple sites from which orders can be ful-
filled. As orders come in, decisions have to be made as to what order to fulfill from
what site. Due to limited warehouse capacity, decisions made in the past can affect
what options are available for fulfilling future orders. In this paper, we study a related
problem put forward by IKEA at SWI: how should orders received through IKEA’s
webshop be allocated for fulfillment to its stores, taking into account potential future
orders?

This problem requires balancing two factors: on the one hand, shipping costs are
affected by the geographical proximity of the customer to the fulfilment site. Ideally,
we would like each order to be fulfilled by the site, which results in the lowest cost for
that order. This is the approach currently used by IKEA: as orders come in through
their webshop, they immediately allocate each order to the warehouse that can handle
it most economically.

However, as the sites may have limited capacities (e.g., limited stock or limited
picking capacity), such a greedy strategy might cause the capacity of a warehouse
to become exhausted, resulting in higher costs for orders received later. This means
that we have to take into account not only immediate fulfillment costs but also the
remaining capacity of each warehouse and a prediction of future orders. For example,
if an order is received that can be fulfilled by two warehouses at roughly equal cost,
it might make sense to allocate it to the warehouse whose capacity is least likely to
be exhausted. Otherwise, we might incur high costs for shipping future orders that
are close to one warehouse but farther away from the other. In this paper, we propose
several methods for determining how fulfillment costs and preservation of remaining
capacity can be balanced.

The significance of reducing logistics costs extends beyond mere financial sav-
ings; in fact, low costs and sustainability are closely related (Belién et al., 2017). Re-
ducing reliance on transportation translates to lower emissions of greenhouse gases
(GHGs), which is one of the crucial targets of Sustainable Development Goal (SDG)
13: Climate Action (United Nations, 2024). Particularly in Europe today, transport
emissions account for approximately a quarter of the EU’s total GHG emissions (Eu-
ropean Environmental Agency, 2024). These considerations underscore the impor-
tance of the problem addressed in this paper.
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1.2 Research Questions

In this study, our aim is to develop a strategy to allocate each online order to a ful-
fillment center in such a way that daily total costs are minimized and the number
of fulfilled orders is maximized. To guide our research, we establish the following
research questions based on IKEA’s stated interest:

RQ1 How do different allocation strategies impact both the feasibility and costs of
order fulfillment?

RQ2 What is the potential for optimization in order allocation when all orders are
known in advance?

RQ3 How does a batch processing approach, where orders are evaluated for feasi-
bility before allocation, compare to immediate allocation strategies in terms of
feasibility and cost efficiency?

RQ4 What are the implications of enabling order splitting on the feasibility and cost
of order allocation strategies, and how do these insights differ from strategies
without order splitting?

RQ5 Which configuration parameters, such as available resources and picking costs,
serve as primary bottlenecks in achieving complete fulfillment of orders, and
how do adjustments to these parameters impact overall fulfillment rates and
costs?

1.3 Related Literature

This study primarily contributes to the literature on online order fulfillment and the
stochastic generalized assignment problem. Order fulfillment has been extensively
studied by numerous researchers over the decades, and we refer to Croxton (2003)
and Ricker and Kalakota (1999) for a comprehensive review of this research area. The
rapid growth of e-commerce has led to a paradigm shift in order fulfillment method-
ologies. As firms face the challenges of efficiently managing multi-echelon distri-
bution networks, numerous studies have underscored the significance of integrating
inventory optimization and order allocation. We cite Ishfaq and Bajwa (2019) who
introduce a non-linear mixed-integer profit maximization model of the online order
fulfillment process for multi-channel retailers, Zhao et al. (2022) who provide theo-
retical bounds and empirical validation for a myopic fulfillment policy in e-commerce
logistics, Levin (2023) who introduces a real-time control policy for online order
fulfillment that improves throughput and customer service under uncertainty, Rao
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et al. (2011) who empirically show that order fulfillment delays in online retailing
negatively affect customer shopping behavior, and Onal et al. (2023) who introduce
efficient heuristics for improving picking efficiency in fulfillment warehouses.

The problem that we address in this study is similar to the stochastic generalized
assignment problem (SGAP) (Albareda-Sambola et al., 2006), which is an extension
of the generalized assignment problem (GAP). The GAP itself is an extension of
the traditional, well-studied assignment problem. The assignment problem addresses
situations where a number of items need to be assigned to a number of agents, e.g.,
assigning workers to tasks or programs to computers. Algorithms like the Hungarian
method have been developed to solve assignment problems efficiently (Conforti et al.,
2014, p. 149). If each agent has a certain capacity, which is found in many real-world
situations, the classical assignment problem becomes the GAP. For a comprehensive
survey of the traditional GAP, we refer to the work by Oncan (2007).

In reality, uncertainties may reduce the validity of some GAP models. Possible
situations include a change in agent capacity, no-show of agents, and so on. These
concerns motivate the incorporation of uncertainties into the GAP, hence the study
of SGAP. There is not a lot of rich literature available on SGAP (Albareda-Sambola
et al., 2006), yet we cite Alaei et al. (2013) who introduce a 1 — #—competitive al-
gorithm for online SGAPs, Albareda-Sambola et al. (2006) who allow reassignments
to be performed if there are overloaded agents, Li et al. (2023) who introduce an
algorithm for the online SGAP with unknown Poisson arrivals, Morton et al. (2009)
who develop a branch-and-price approach to the SGAP, Sarin et al. (2014) who de-
velop a branch-and-price approach for the stochastic generalized assignment machine
scheduling problem, and Spoerl and Wood (2003) who develop a stochastic version
of the elastic generalized assignment problem (EGAP).

However, it should be noted that, in an e-commerce environment, order alloca-
tion does not need to be determined instantly, and sometimes, ‘A little delay is all we
need’ (Xie et al., 2023). Although delay is not an option, as IKEA has to assign the
customer to a fulfillment center as soon as the order is placed, we still discuss the
general ideas to inspire future operational processes. Recently, Xie et al. (2023) ex-
plore the benefits of delaying real-time decisions, drawing on research by Zhao et al.
(2022) that indicates minor delays in order processing improve outcomes in dual-
layer networks, a concept also observed by Wang et al. (2023) in practices involving
short delays. Xie et al. (2023) demonstrate that in online decision-making, the dif-
ference in performance between strategies with delays and optimal offline strategies
narrows exponentially with increased delay duration. Their research, involving ex-
tensive numerical experiments with both synthetic and real-world data, highlights
that minimal delays are most advantageous, with longer delays offering diminishing
returns. Additionally, in contexts where demand distribution is unknown, delays are
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shown to be beneficial for algorithmic learning. Xie et al. (2023) also investigate
batch decision-making, finding it to be a less effective form of delay compared to
individual delays.

1.4 Paper Outline

Our paper is structured as follows. The dataset provided by IKEA is explored in
Section 2. We provide the mathematical formulation and the optimal offline solution
in ??2. Our strategies for the problem are detailed in Section 3. Computational results
and their evaluations are documented in Section 4, including a discussion on the
implications of the results. The final section is reserved for conclusions.

2 Exploratory Data Analysis

The dataset provided by IKEA provides a representative sample of their online order-
ing process, including a variety of variables such as order frequency, item weight, and
availability, which are important for understanding the dynamics of order fulfillment.
In our exploratory data analysis (EDA), we created visualizations to uncover patterns
and insights to guide our optimization strategies in the subsequent sections.

Daily Number of Orders. We analyze order frequency by investigating the distri-
bution of orders over time.

Figure 1 shows a fluctuating pattern of daily orders over the course of a month.
These significant fluctuations are potentially caused by factors such as weekly cycles,
holidays, and promotional activities. There is a sharp increase towards the end of the
period after a dip, possibly corresponding to a holiday period or resulting from a
marketing campaign.

Order Forecast. Forecasting the actual number of orders that will arrive during
a day can be a challenging task. In principle, robust time series models or machine
learning models are suitable for use in such cases. However, having enough historical
data is a vital requirement for accurately training such models. Our dataset only
consists of one month of orders, which likely is not enough to obtain a sufficient level
of accuracy.

Despite this limitation, we deployed two time series models to assess their po-
tential application. The goal of both models is to predict the number of daily or-
ders. Using the 31-day dataset, we trained the models on the first 21 days and
tested them on the last 10 days. Seasonal Autoregressive Integrated Moving-Average
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Figure 1: Daily number of online orders at IKEA over the course of a month.

with Exogenous Regressors (SARIMAX) has shown capability to capture patterns
for small datasets (Tarsitano and Amerise, 2017), while TimeGPT has demonstrated
promising results to produce accurate forecasts across various domains (Garza and
Mergenthaler-Canseco, 2023).

Figure 2 shows the observed data, test data, and predicted daily orders. The
predictions follow the trend but cannot capture dips and peaks in the data which
corresponds to the initial hypothesis that such models would likely not give accurate
forecasts with such a dataset size.
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Figure 2: Order forecasts deploying two time series models: SARIMAX and
TimeGPT.

Furthermore, we deployed additive time series decomposition to test for season-
ality influences. The observed number of orders Y(¢) is decomposed into trend, sea-
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sonality, and residual components in Equation (1). The day of the week is found to
be not statistically significant in influencing the number of orders in the 30-day data
set, as seen in Figure 3.

Y(&) =T+ S@) + R(@). (1)
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Figure 3: Time series decomposition of the incoming number of orders. There seems
to be a weekly seasonal pattern, however it was not statistically significant. Kruskall
Wallis test (p-value=0.47).

Item Frequency. An overview of items that constitutionally account for a large
portion of the orders can be seen in Figure 4. The graph follows a Pareto distribution,
suggesting that a small number of items constitute a significant portion of the total
number of orders. A statistical Kolmogorov-Smirnov test (Berger and Zhou, 2014)
was performed to evaluate the fit of the item frequency distribution to a Pareto distri-
bution, resulting in a p-value of approximately 0.143. This result indicates that there
is not enough statistical evidence to reject the starting hypothesis that the distribution
follows a Pareto distribution, confirming that a small number of items significantly
influence the total order volume. The first item appears to be an outlier, dominating
the frequency chart with a significantly higher order count.

The percentage contribution line overlaid on the bar graph decreases almost lin-
early, indicating that each item subsequently contributes less to the overall order vol-
ume. This pattern underscores the importance of focusing on inventory and supply
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chain strategies for these top-selling items, given their potential to impact customer
satisfaction and order fulfillment efficiency. It also suggests that good inventory man-
agement of these items is crucial, as they drive a substantial portion of the business.

Top 20 Most Frequently Ordered Items with Percentage Contribution
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Figure 4: Top 20 Most Frequently Ordered Items.

Item Availability. As the items described in the previous paragraph represent a
large portion of the orders, it is important to examine their availability across the
various IKEA stores. Figure 5 provides a visual representation of the availability of
these high-demand items across stores. The rows correspond to the top twenty items
that were ordered. The columns represent individual stores. The majority of blue
across most items and stores suggests a good alignment between IKEA’s inventory
strategy and its demand patterns. However, there are noticeable gaps in availability
for some items in specific stores.

Item Weights and Order Complexity. Another important aspect of the analysis is
examining the behavior of item weights and complexity in orders. Figure 6 shows
the distribution of both the total weight of orders and the distribution of item weights
in orders. Both show a highly left-skewed distribution, and these plots indicate that
most orders are light, with a few orders having significantly higher total weight. This
shows that IKEA’s order profile is mainly composed of smaller, lighter items, with
occasional larger purchases.

The complexity distribution of the orders, i.e., the number of unique items in
each order, is shown in Figure 7. We find that the majority of orders are relatively
simple, containing a few unique items. As the number of unique items per order
increases, the frequency of such orders sharply declines, indicating that orders with
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Figure 5: Availability heatmap for the top 20 most frequently ordered items.
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Figure 6: Distribution of total order weights.

higher complexity are considerably less common. This trend continues, with orders
containing more than five unique items becoming increasingly rare.

Correlations. To investigate the correlation among item weight, frequency, order
date, and store availability, we constructed the correlation heatmap displayed in Fig-

ure 8.
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Figure 7: Distribution of order complexity.

There is a strong negative correlation of —0.88 between item weight and store_5
availability, suggesting that heavier items are less likely to be found in store_5. Con-
trarily, store_6 shows a strong positive correlation of 0.64 with item weight, indicat-
ing that this store tends to stock heavier items more frequently.

The availability of items in store I and store 3 shows a moderate positive correla-
tion with item frequency, with correlation coefficients of 0.22 and 0.15, respectively.
This implies that more frequently ordered items are more likely to be available in
these stores.

Store_4 shows an interesting pattern, with a perfect negative correlation of —1.00
with sfore_6, indicating a mutually exclusive stocking policy between these two
stores. This pattern could be due to a variety of reasons, such as store specializa-
tion, geographical considerations, or customer demographic differences.

Cluster Analysis. Given the results of the order inter-dependencies and correla-
tions, we can deduce that clustering items across orders could be beneficial, espe-
cially when IKEA considers order splitting, which could be based on different item
characteristics. We, therefore, deployed two clustering algorithms to create clusters
of similar items based on individual weight and frequency found across all orders:
K-means (Jin and Han, 2010) and Density-Based Spatial Clustering of Applications
with Noise DBSCAN (Ester et al., 1996).

Figure 9 shows the application of the K-means and DBSCAN clustering algo-
rithm to the orders dataset, scaled based on item weight and frequency. The elbow
method plot on the top left identifies the optimal number of clusters, with the elbow
point occurring at three clusters. This suggests that in the data, we can distinguish
three groupings of items that offer the most significant reduction in within-cluster
variance without unnecessarily increasing the complexity of the model. The Scaled
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Figure 8: Correlation Heatmap among item weight, item frequency, order date, and
the available stores (fulfilment centres).

K-means Clustering plot on the right visualizes these three clusters. Each point rep-
resents an item, plotted by its scaled weight and frequency. The clustering reveals
different densities and distributions: a slightly dense cluster near the origin, a mod-
erately dispersed cluster above it, and a more sparse cluster further along the axis of
scaled item weight.

The two bottom plots in Figure 9 present the clustering results of the K-means and
DBSCAN (e = 0.5) algorithms for items based on unscaled weight and frequency.
The K-means algorithm, with the number of clusters set to three, identifies groups
with distinct characteristics:

o Cluster 0 is comprised of items with a low average of item weights of 1.82 and
a high average frequency of 2129.50. This cluster represents the light items
that are more frequently ordered, possibly indicating high-demand products.

o Cluster 1, the most dense with over 81 items, has a moderate mean item weight
of 4.97 and a low to moderate item frequency mean of 667.30. This cluster
represents the middle ground between clusters 0 and 2, where it might contain
items not as light as those in cluster O but still have a decent level of demand,
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Clustering Results for Items Based opy Weight and Order Frequency
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Figure 9: K-means and DBSCAN results for clustering based on item weight and
frequency across all orders.

although not as high.

o Cluster 2 consists of orders with a high mean item weight of 47.39 and a mean
item frequency of 1029.50, possibly representing the bulkier and more fre-
quently ordered products.

The DBSCAN algorithm, known for its ability to find arbitrarily shaped clusters
and identify outliers, presents a different view:

e Cluster -1, containing 12 items with a high mean item weight of 25.91 and
frequency of 1758.42, indicating a small group of heavy and frequently ordered
items. Cluster -1 in the output of DBSCAN typically represents a segment of
outlier points.

e Cluster O is the most substantial, with over 81 items, showcasing a low to
moderate mean item weight of 4.83 and frequency of 668.65.

o Cluster 1 contains the smallest number of items, with a low mean item weight
of 1.09, but a high frequency of 1752.83 across all orders. This suggests that
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these few items might be standard purchases of high-demand small products.

The various insights gained from the EDA provide us with a comprehensive un-
derstanding of the problem dynamics and IKEA’s order allocation strategy. Such in-
sights drive the subsequent strategies that have the potential to contribute to effective
and efficient order fulfillment.

3 Order Allocation Strategies

In this section, we discuss the strategies that we compare in our results in Section 4.
The greedy algorithm (with and without order splitting) is a basic strategy that has
been provided by IKEA.

3.1 Greedy Algorithm

A simple yet effective approach is to use a greedy algorithm that assigns each incom-
ing order to the facility that minimizes the cost function immediately. We use this
model as a baseline to compare all strategies. For each subsequent order, the greedy
algorithm chooses the store that minimizes the cost of fulfillment over all stores u
that are able to fulfill order %, i.e., the individual terms in the sum of Function (2?).
Thus, the objective function to minimize becomes:

Ck (yk) = Z (CEFWIE‘” + CTDZM)y];, )
uelUyi]

where [Ug] is the set of all stores that have sufficient remaining capacity to fulfill
order y* after the allocation of all k — 1 previous orders. Note that all constraints (??)-
(??) in the ILP formulation of the optimal solution must still be adhered to. As we
allocate each order to a store directly upon arrival, the previously assigned k — 1
orders may significantly affect the possibilities when allocating any future order k.
This limitation is included in Cy (yk) by choosing between stores in [Uy] instead of
[U].

3.1.1 Extension to order splitting

As an extension to the basic greedy model, we also considered the allowance of order
splitting. If orders are allowed to be split, we instead choose the optimal pair (¢, y*)
in (2??), again with the restriction that we can only choose from the set [Uy] of all
stores that have the sufficient remaining capacity to fulfill order y* after allocating
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the k — 1 previous orders. So the objective function of the extended greedy model to
minimize becomes:

Cug“ .y = > (C5V +CTDz.) ok + ). ClF Wik, (3)
ue[Uyx] i€ly
We do not thoroughly consider order splitting beyond the greedy algorithm, and the
greedy algorithm with order splitting should not be compared to the other strategies
discussed in this section. Note that in order to properly compare potential strategies
that do allow for order splitting, one should also extend the offline optimal solution
as given in ?? to allow for splitting.

3.2 Heuristic - Greedy with Residual Capacities

Greedy attains the (offline) optimal solution on more quiet days, i.e., on days where
the maximum capacity of stores is not reached with the greedy strategy (2). Whenever
there is some maximum capacity reached throughout the day, the performances of the
optimal solution and greedy do differ. On such days, the greedy algorithm performs
worse by a substantial amount: many orders are not being fulfilled (or are assigned
to a sub-optimal store) because the maximal capacities of more favorable stores are
reached. In the heuristic model, we attempt to improve the greedy strategy by taking
into account the remaining capacity of each store when assigning orders. We will
provide a description of two versions of the heuristic model, the basic and extended
model. Here, the extended model is a generalization of the basic model.

3.2.1 Basic Heuristic Model

The main issue in the greedy approach during busier days stems from the variability
among stores. Certain stores may be substantially cheaper than others, for instance,
stores with a low picking cost per weight or with a central position in the area. As
the greedy approach favors the cheapest option for each order, such stores run out
of capacity very quickly. If, at some point during the day, all stores that contain
some item i have reached their maximal capacities, then every subsequent order that
includes item i cannot be fulfilled, and a penalty cost will be given to these orders. To
remedy this problem, we propose the following heuristic: we let the choice of a store
depend not only on the cost to fulfill order k at store u, but also on the remaining
capacity of store u for that day. This ensures that the orders are distributed more
evenly across stores. In turn, we can fulfill more orders, leading to reduced penalty
costs.

Similar to the greedy approach, we assign each order instantly without prior in-
formation about future orders. Additionally, the basic heuristic uses information from
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previous orders to determine the optimal store for the order. We define the residual
capacity R, and normalised residual capacity R, of a store u when evaluating order
k as:

k=1
; ~ R
N Va4 tot . J — u
R,:=M" - ; Wi'y),  where R, := v (4)
For each order £, the basic heuristic minimizes the objective function

1

Ce(y) = > = (CE W + CT Do) ok (5)
ue[U] 4

Again, note that we can still only choose any store u € [Uy] with sufficient remaining
capacity. To summarise, compared to (2), the new formula includes a factor that
weighs in the remaining available capacity for each store. Note that at the start of
the day, R, = 1 for all u, so that the greedy and heuristic approaches will make the
same choice. As more orders are fulfilled during the day, if the normalized residual
capacity of the store u increases relatively quickly, it will become more likely that an
order gets fulfilled by another store, even if store u# can fulfill it at the lowest cost. See
also Figure 10. Note that, similar to the greedy algorithm, an order is always fulfilled
as long as there is at least one store that is able to do so.

1207
Greedy

EEE Heuristic
100

80+

60

Fulfilment Cost

40+

20+

Store

Figure 10: Values of the separate terms in objective functions (2) (greedy) and (5)
(heuristic) for a specific order k. Stores 1, 2, 5, 6, and 7 are able to fulfill the order.
The greedy algorithm chooses to store 7, minimizing the cost function. The heuristic
algorithm weighs in the residual capacity and picks store 1.
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3.2.2 Extension to Busy Day Factor

A natural question to the comparison of the basic heuristic and the greedy algorithm
is: to what extent should the normalized residual capacity R, influence the choice
of the store? On days when it is possible to fulfill every order at the lowest cost,
the greedy algorithm is optimal and might outperform the basic heuristic algorithm.
Conversely, on busy days, it may be more beneficial to base the choice of store solely
on the normalized residual capacities and disregard the cost of fulfilling an order
completely to maximize order fulfillment. We introduce the busy day factor g € [0, 1]
that quantifies the influence of the normalized residual. We generalize the function
in (5) to the following:

5
Ce(yY) = (Ri) .(chW,gowcTDZk,u)l_ﬁ . (6)

Note that 3 set to 0.5 is equivalent to the basic heuristic approach, as x — x* is
an increasing function and distributes over multiplication. Figure 11 illustrates how
different values of g affect the extended heuristic’s performance compared to greedy.
In practice, one could choose the busy day factor based on a prediction for the number
of orders on a specific day (with a low value on quiet days, and a higher value on busy
days). Alternatively, one could use a different factor Sy for each order on the same
day. For instance, by initializing 5 to 0 and adjusting the value as the day progresses
based on the observed busyness.

When S is set to 1, we completely disregard any characteristics of the order and
simply pick the store that has the most relative capacity left, i.e., with the highest nor-
malized residual capacity R,. We can see in Figure 11 that this choice of 8 is optimal
on Day 3 (which is a busy day). This can be expected based on the computation of
the final cost in this model: each unfulfilled order adds a set penalty cost of C* to
the total. If C” increases, fulfilling as many orders as possible becomes significantly
more beneficial than fulfilling each individual order at the optimal store. Modifying
the value of C?, or introducing a variable penalty cost C ]f dependent on order k, could
change this outcome.

3.3 (DLP with predictions

In ??, we discussed how the optimal solution is obtained by solving an ILP if all or-
ders are known in advance. Our challenge lies in allocating the current order without
prior knowledge of future orders. However, if we have a prediction of expected future
orders based on historical data, we could use this to solve the allocation of the current
order in the same way. Plugging in the predicted orders along with the current order
in the ILP in Subsecton ??, we obtain a solution for allocating the current order.
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Figure 11: Comparison of the extended heuristic and greedy approach on four differ-
ent days for varying values of 5. On busy days 1 and 3 (above average of total orders),
we find higher values of 8 to be optimal. Day 4 is more quiet (close to average), and
the optimal value for S lies between 0.5 and 0.9. On notably quiet day 14 (below
average), the greedy approach is optimal.

3.3.1 Basic (I)LP Model

We use a very simple prediction of expected orders. As the prediction of orders on
a typical day, we sample 600 orders at random from orders in the last fifteen days of
the orders dataset (and we always use the same, fixed, random sample). The number
600 is chosen because it is close to the average number of orders per day in the orders
dataset.

Depending on our estimate of the time of day, we take a corresponding portion
of those 600 orders as a way of predicting which orders were still to come. Since
the dataset does not include the time of day each order was received, we assume the
orders were received at an even rate throughout the day.

Note that, with this model, we would essentially execute the offline optimal algo-
rithm once for each single order. Since the model is meant to integrate into IKEA’s
customer-facing website, where customers need to be presented with delivery op-
tions for their orders in (near) real-time, this would be too time-consuming. Instead
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of solving the entire ILP in Subsecton ??, we solve a slightly simpler version, where
we relax all variables that do not directly correspond to the current order to be con-
tinuous.

We expect that this will not affect the quality of the solution too much, as solu-
tions will likely tend towards integer values for their variables due to the nature of
the formulation. Moreover, any rounding errors are unlikely to significantly influence
solution quality, as we are planning around inherently simple and imprecise predic-
tions. The resulting ILP only has seven binary variables and can be solved within
a fraction of a second, making it more suitable for potential integration into IKEA’s
customer-facing website.

We explored the sensitivity of this method to the quality of the prediction of
future orders. More specifically, we tested whether a more accurate estimate of the
total orders per day would improve the solution. For each day, we used the actual
number of orders received that day rather than taking a fixed estimate of 600 orders
as a prediction. Aside from this, we keep the method the same, sampling at random
from orders in the last fifteen days of the orders dataset.

3.3.2 Shadow Prices

Implicitly, the (I)LP model essentially uses a greedy strategy augmented with shadow
prices for depot capacity derived from the ILP for the predicted orders. So, rather than
solving the complete ILP for each customer order, one can instead use pre-computed
shadow prices and a greedy assignment heuristic. This is more computationally effi-
cient and could improve runtime significantly compared to the basic (I)LP model.

Moreover, using shadow prices may facilitate extensions of our method to more
complex settings, e.g., involving order splitting. It may even be possible to use col-
umn generation to solve even more complicated versions, while still using shadow
prices to enable the website to quickly allocate individual orders. The shadow prices
could be recomputed throughout the day, taking into account new information.

Our heuristic approach attempts to balance the allocation of orders by defining
residual capacities R, for each store, and adding a penalty to the greedy approach
depending on the residual capacity. In a sense, the ‘correct’ value for the penalty
factor that the heuristic approach tries to approximate (by intuition) should be one
equal to the shadow prices from the ILP.

3.4 Deep Learning

Our last approach explores the application of deep learning to predict optimal store
allocations for incoming orders at IKEA. This method differs from the heuristic algo-
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rithms, as it involves offline training and does not necessarily require real-world data.
Instead, the neural networks can be trained using optimal solutions of synthetic data.
However, to ensure consistency with the other approaches involved in this study, we
used the same dataset instead of augmenting the training process with synthetic data.

In this approach, each order is labeled with its optimal solution. This allows
the network to learn from the data, capturing patterns that lead to the corresponding
decisions. In the end, our goal is to enable the network to generalize this learning
process to new orders and predict the best allocation without prior knowledge of all
orders for the day.

The architecture of our neural network is summarised in Table 1. We aimed to
keep the initial model simple, exploring the feasibility of this approach to the problem
setting. This allowed us to get initial predictions without the need for more complex
architectures.

Component Details
Input Layer Processes order details and historical data.
Hidden Layers First: 64 neurons, ReLU activation.
Second: 32 neurons, ReLU activation.
Output Layer Softmax activation.
Loss Function Categorical Cross-Entropy,
and Optimiser Adam optimiser.
Training 500 epochs, batch size of 10, 10% validation split.
Parameters

Table 1: Summary of the neural network architecture.

The results of the training process are visualized in Figure 12, displaying the
model’s accuracy and loss over epochs. The plot shows that the model initially learns
quite fast, obtaining high accuracy scores. The training loss shows a steady decrease;
however, after around 90 epochs, the validation loss increases, which indicates over-
fitting. It is, therefore, important to stop training at this point to allow the model to
generalize on new unseen orders.

As mentioned before, we recognize that the use of real historical data from IKEA
in training our deep learning model was primarily to maintain consistency across all
approaches evaluated in this study. The scope of historical data is limited to past
scenarios, and while it provides a valuable learning foundation, it may not capture
insights into the dynamics of future order fulfillment. Therefore, incorporating syn-
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Figure 12: Training and validation accuracy (left) and loss (right) for the deep learn-
ing model over 500 epochs.

thetic data could significantly augment the training process. Such synthetic datasets
would not only serve to validate the model’s performance against known outcomes
but also prepare it for unseen situations, potentially improving its robustness and
generalizability.

4 Evaluation and Discussion

In this section, we provide a comprehensive overview of the performance and impli-
cations of all implemented order allocation strategies. Additionally, we discuss key
points and contextualize our findings.

4.1 Overall Performance

In our study, we evaluated all order allocation strategies by calculating the total cost,
the percentage of unfulfilled orders, and their running times using a test dataset. We
employed a unified testing framework to run these strategies in a modular manner,
ensuring maximal consistency in the results. The data for the study, provided by
IKEA, was divided into two sets: a training set (the last 15 days of the month) and
a test set (the first 15 days of the month). We computed the evaluation metrics on
the test dataset. Table 2 provides a comparison overview of the order allocation
strategies.

All execution times were recorded on a shared GitHub Actions runner instance.
This instance is a 4-core machine running Linux (Ubuntu 22.04) with 16GB of RAM.

The total cost of each strategy, along with the percentage of its failed orders, is
also visualized in Figure 13. Notably, the deep strategy (Neural Network) results in
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Order Allocation Total Unfulfilled Running

Strategy cost orders (%) time (s)
Optimal solution 1,024,164 132 % 228.06 s
Greedy algorithm 1,764,998 3.82 % 0.14 s
Heuristic 1,489,415 2.75 % 0.13s
LP with Prediction 1,242,627 2.07 % 1586.55 s
Neural Network 2,090,043 4.67 % 1.55s
Greedy with Order Splitting 1,429,178 2.85 % 76.27 s

Table 2: Comparison of all implemented order allocation strategies.

the highest costs and the largest percentage of failed orders, with greedy coming in
next. Reapeatedilp (LP with Prediction) falls on the lower end of the spectrum with
cost and failed order percentage compared to the optimal strategy. The heuristic ap-
proach improves over greedy while maintaining low execution time. The splitgreedy
(Greedy with order splitting) strategy incurs a lower total cost and failed percent-
age of orders than the greedy approach. However, a drawback of the order splitting
extension compared to regular greedy is its significantly higher running time.

greedy deep heuristic greedy deep heuristic
splitgreedy optimal repeatedilp splitgreedy optimal repeatedilp
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Figure 13: Overall cost and percentage of failed orders for each allocation strategy,
as evaluated on the sample dataset provided.

4.1.1 Performance per Day

Figure 14 illustrates the performance for each day of the simulation. The performance
varies significantly due to the different sets of orders each day. Notably, the deep
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strategy shows a spike in cost and failed orders on the third day, which was a busy
day. This highlights its sensitivity to complex variations in daily orders, particularly
on active days. As expected, the optimal strategy yields the lowest costs and the
fewest failed orders. However, it exhibits significant day-to-day variations in runtime.
Similarly, the repeatedilp strategy consistently shows prolonged runtimes across all
days. This emphasizes the fact that the repeatedilp strategy is more computationally
expensive compared to the others.

Strategy Performance Day-by-day

For a more detailed breakdown of each day in the dataset.

| ] deep houristic spitgreedy optimal [ repeatedip
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Figure 14: Cost, failed orders, and runtime per day comparison of the various alloca-
tion strategies, as evaluated on the sample dataset provided.

4.1.2 Best Solution: (I)LP with Predictions

For the days in the test dataset, IKEA’s greedy algorithm incurs a cost of 1,764,998,
while the optimal solution has a lower cost of 1,024,164. The ILP, with Prediction
methods, has a cost of 1,242,627, so it realizes 522,371, or 76%, of the potential
savings.

The experiment using the real number of orders as a prediction resulted in a
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slightly cheaper solution (cost 1,184,156 versus 1,242,627 for using a fixed estimate
of 600 orders per day); see Figure 15. However, the difference compared to using
the fixed estimate is very small, so it appears that the method is not sensitive to the
accuracy of the number of estimated orders.
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600 mActual Quantity

Figure 15: Total cost per day for the (I)LP model under the fixed estimate of 600
orders and the actual quantity of orders taken as an estimate, tested on the first fifteen
days of the orders dataset. Taking the actual quantity reduced the total cost by +2
percent on average.

On most days using the better prediction resulted in lower costs, but on some
days we obtained higher costs than the fixed estimate. This included some relatively
quiet days —i.e., replacing a (for those days) very inaccurate prediction with a better
one resulted in worse performance. It may be the case that the sampled orders during
the run with the fixed estimate were coincidentally more similar to the actual orders
of that day than during the run with the actual order quantity.

4.1.3 Dashboard

The effectiveness of the various order allocation strategies is dynamically illustrated
in our interactive dashboard (Figure 16).
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Figure 16: The dashboard created as part of the project. The current screen visualises
the order locations (small dots in blue), as well as the store locations (larger dots,
coloured). Shipments are indicated by a line connecting an order to a store. This
is an interactive visualization as the user can follow the allocations live over time,
providing intuition for the individual strategies. The store depletion is shown at the
bottom and also tracked over time.

4.2 Batch planning

Between the fully online setting, where each order is planned immediately without
information on future orders, and the offline setting, which has information on all
orders for the day, there exists an intermediate approach that involves planning a sub-
set of consecutive orders. This method requires the algorithm to wait for a certain
number of orders to accumulate before planning them as a batch. However, we did
not explore this modeling option as it would not provide a viable solution for IKEA.
IKEA’s expected service level requires that customers receive delivery options in-
stantaneously, making this approach impractical.
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4.3 Algorithm Performance on Quiet Days

From Figure 14, we identify days 4 and 14 as relatively quiet days with lower order
volumes. On these days, the performance differences between the various allocation
strategies are significantly diminished, and most approaches closely align with the
optimal solution.

On day 4, the greedy and splitgreedy algorithms’ cost and percentage of failed
orders do not deviate too much from the optimal solution. This is because the lower
order volume allowed the greedy approach to allocate most orders to their respective
optimal locations without exhausting the resources of the closer, more cost-effective
stores. The heuristic approach and the repeatedilp also show minimal deviations
from the optimal solution on this quiet day.

It is worth noting that the runtime of the greedy approach remains more or less
consistent across most days, with an outlier observed on day 3, likely an anomaly and
would not persist if the experiments were repeated. On the other hand, the optimal
runtime fluctuates from day to day, where it peaks on day 3 and then decreases on
day 4.

The running time of the other algorithms remains relatively consistent across all
days, and even the very quiet Day 14 has no impact on it. In fact, the performance
of all the algorithms on day 14 is similar to that observed on days 11-15. This phe-
nomenon is also observed for both cost and percentage of unfulfilled orders, where
by day 11, all strategies converge very close to the optimal solution. The simplicity of
the order patterns on such quiet days (onwards of day 11) resulted in most strategies
giving allocations that were nearly optimal.

These findings suggest that investing in high-complexity strategies (such as deep)
may not always be justifiable, particularly for IKEA, which experiences fluctuations
in daily order volumes. For operations where quiet days are frequent, focusing on
fine-tuning simpler algorithms (such as heuristic) or developing strategies that can
scale complexity according to demand may be a more cost-effective approach.

4.4 Scalability

In evaluating the scalability of our solutions, it’s important to consider how they
would adapt to changes in scale, such as an increased number of orders, variability
in warehouse capacities, or an expansion in the number of warehouses. Scalability is
a critical attribute, particularly for a global retailer like IKEA, which must be able to
maintain efficiency as it grows and as demand fluctuates.

Our solutions demonstrate scalability potential in terms of computational runtime
and adaptability to different problem settings. The greedy and heuristic strategies,
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with their lower computational overhead and faster runtimes, seem more scalable
for handling a larger number of orders. The greedy approach, for instance, focuses
on immediate cost minimization, while the heuristic incorporates residual capacities,
making them versatile across different order volumes and warehouse capacities.

That being said, the scalability of strategies such as repeatedilp and splitgreedy
could be challenged by larger datasets and a more extensive network of warehouses.
The computational complexity of these methods, as indicated by longer runtimes,
may lead to diminishing returns as order volume increases unless parallelization or
other efficiency-enhancing measures are implemented. Additionally, these strategies
might require more sophisticated hardware and software infrastructure to handle the
increased complexity of larger-scale operations.

Additionally, since our repeatedilp method combines a greedy strategy with shadow
prices for depot capacity, rather than solving the entire LP for each individual order,
we can use precomputed shadow prices along with a greedy assignment heuristic.
This approach potentially improves computational efficiency and opens up possibil-
ities for extending the method to handle more complex settings. Other optimization
techniques, such as column generation, can be used to tackle highly complicated
scenarios while still maintaining the ability to swiftly allocate orders on the website.

The capacity of warehouses is another critical factor for scalability. If IKEA
were to increase warehouse capacities, algorithms would need to adapt to these new
constraints. Strategies that incorporate predictions or utilize deep learning may need
retraining or recalibration to account for the changes in capacity and ensure that order
allocations remain efficient. Furthermore, the introduction of more warehouses could
complicate the order allocation process due to the increased number of potential al-
location points. Strategies that performed well with a smaller number of warehouses
might not scale as well with the addition of more locations due to the increase in
possible combinations for order distribution.

In our analysis, we assumed a static warehouse network. In reality, IKEA’s ware-
house network may expand or contract. Our solutions might also need to consider
other logistic aspects of the problem such as varying delivery times and time windows
of customers in order to maintain high service levels as the scale and complexity of
operations increase.

4.5 Deep and Machine Learning Potential

With the current deep model trained on only 15 days’ worth of data, the findings
show poor performance and possibly overfitting as seen from Figure 12. However,
its performance could significantly improve with access to a larger, more diverse
dataset.
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Neural networks thrive on large datasets that span several months or years as they
allow the model to capture complex patterns in customer behavior, seasonal varia-
tions, and order distributions that are not evident in smaller samples. Training the
neural network with data containing various seasonal peaks, marketing campaigns,
and a broader range of customer orders would result in a more accurate and robust
model. The model could then not just improve the optimal warehouse prediction for
order fulfillment but also anticipate fluctuations in order volume, which are vital for
capacity planning and inventory management.

It is important to note that while the neural network might inherently capture the
behavior of busyness through the trained daily orders, this aspect is not explicitly
modeled as an input feature. Incorporating features that directly relate to the char-
acteristics of busy days or other relevant input parameters could potentially enhance
the model’s robustness and accuracy.

Similarly, for the forecasting of daily orders, our current time series models are
constrained by the limited scope of a single month’s data. With this timeframe, it
is challenging to capture the long-term seasonality and trends that could impact or-
der volumes. Expanding the dataset to include multiple years would allow us to in-
corporate annual patterns, such as holiday seasons, back-to-school periods, or other
cyclical events that significantly influence customer purchasing behaviors. This en-
riched data would increase the accuracy of the forecasting models. For instance,
an improved forecast of daily orders could directly benefit the repeatedilp strategy,
which currently relies on a rough average of daily orders. By integrating a machine
learning approach, the updated strategy could dynamically adjust to expected daily
fluctuations, optimizing resource allocation in real-time.

Lastly, more extensive data would enable better feature engineering and hyperpa-
rameter optimization, which could lead to more sophisticated models. These could
include ensemble methods that combine various predictive techniques to account for
different types of variability in order data, such as random forests for feature-rich
insights or gradient boosting machines for performance efficiency.

4.6 Practical Considerations

One of the primary considerations is the geographical diversity inherent in a global
operation like IKEA’s. The dataset used for our analysis is potentially limited in
scope, representing a specific regional market or set of logistic circumstances. Other
regions may present unique challenges, such as varied delivery infrastructure, differ-
ent urban density profiles, or diverse customer behavior patterns, all of which could
impact the effectiveness of the order allocation algorithms. Therefore, models must
be tailored or adapted to reflect the geographical specifics of each new dataset they
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are applied to.

Running these allocation strategies in real time presents another layer of com-
plexity, particularly concerning computational resources and cost. Strategies like
the repeatedilp and splitgreedy are computationally intensive and would require sig-
nificant processing power to operate in a real-time environment, potentially leading
to increased operational costs. Ensuring that the response time of these algorithms
meets the real-time needs of an e-commerce environment may require investment in
high-performance computing resources or cloud-based infrastructures.

4.7 Generalisability: Thinking Beyond IKEA

The inclusion of a ‘busy day factor’ in our heuristic approaches demonstrates adapt-
ability to varying daily demands, which can be an underlying feature in many oper-
ational settings. Moreover, the concept of order splitting is an aspect of our problem
that has broad applicability, such as in manufacturing where components of a product
may need to be sourced from multiple suppliers, and the decision on which suppli-
ers to use could be optimized using a similar approach, especially when considering
factors like cost, distance and supplier reliability.

Furthermore, the fundamental assumptions and constraints used in our models,
such as residual capacity and single-store constraints, are adaptable to problems
where resources are finite and must be distributed in an efficient manner. These con-
straints can be further modified to fit the specifics of other operational challenges,
whether it is in inventory management, distribution of services, or even project task
allocations within large organizations.

Therefore, in essence, our approaches do not only address the immediate opti-
mization needs of IKEA’s e-commerce order fulfillment process but also present a
malleable framework for optimal and heuristic approaches to a fundamental class of
assignment problems found across many operational sectors.

5 Conclusions

In this study, we investigated various strategies for optimizing the allocation of online
orders to fulfillment centers in the context of IKEA’s e-commerce operations. Our
goal was to minimize total costs while maximizing the number of fulfilled orders. We
formulated the problem as an integer linear program and developed several solution
approaches, including a greedy algorithm, a heuristic based on residual capacities, an
LP with predictions, and a deep learning model.

Through extensive computational experiments on a real-world dataset provided
by IKEA, we evaluated the performance of these strategies in terms of total cost,
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percentage of unfulfilled orders, and running time. The results demonstrated that
the repeatedilp approach achieved the best overall performance, realizing 76% of
the potential savings compared to IKEA’s current greedy allocation strategy. The
heuristic method also showed promising results, offering significant improvements
over the greedy approach while maintaining low computational overhead.

Returning to our initial research questions, we can now provide the following
insights:

RQ1 The different allocation strategies had a significant impact on both the feasi-
bility and costs of order fulfillment. The repeatedilp and heuristic approaches
outperformed greedy in terms of total cost and percentage of fulfilled orders.

RQ2 The optimal offline solution, which assumes perfect knowledge of all orders in
advance, provided a benchmark for evaluating the potential for optimization.
Our results showed that there is considerable room for improvement compared
to the current greedy approach, with the repeatedilp realizing a substantial por-
tion of the potential savings.

RQ3 We did not explicitly compare batch processing to immediate allocation strate-
gies due to the real-time requirements of IKEA’s online platform.

RQ4 The splitgreedy approach demonstrated improved performance compared to
the standard greedy approach in terms of cost and percentage of failed orders.
However, the increased computational complexity and longer running time of
this strategy highlight the trade-off between order fulfillment reliability and
operational efficiency.

RQ5 Our analysis revealed that factors such as the daily order volume and the capac-
ity of fulfillment centers play a crucial role in the performance of the allocation
strategies. On quieter days, the performance gap between the different methods
diminishes, indicating that the potential benefits of more sophisticated strate-
gies may be limited in such scenarios.

We also observed that the performance gap between the allocation strategies di-
minishes on quieter days with lower order volumes. The deep model, despite its
potential, was found to be sensitive to the limited training data available. We also dis-
cussed the scalability of the proposed methods, highlighting the importance of con-
sidering factors such as geographical differences, real-time computational require-
ments,

Furthermore, we emphasized the generalisability of our problem formulation and
solution approaches to various other domains beyond retail. The core concepts and
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techniques presented in this work can be adapted to any setting that involves the as-
signment of orders or jobs to capacitated resources, making our contributions relevant
to a broad range of optimization problems.

Future research directions include expanding the dataset to cover a longer time
period and more diverse scenarios, which would enable the development of more so-
phisticated forecasting models and improve the performance of the deep approach.
Incorporating additional real-world constraints, such as varying delivery times and
customer preferences, could enhance the practicality of the proposed methods. In-
vestigating the potential of integrating our order allocation optimization with other
operational decisions, such as inventory management and transportation planning,
could lead to a more holistic and efficient supply chain management strategy.

In conclusion, this study provides valuable insights for practitioners seeking to
improve their online order fulfillment processes. By leveraging optimization tech-
niques and machine learning, retailers can significantly reduce costs, increase cus-
tomer satisfaction, and gain a competitive edge in the rapidly evolving landscape of
online commerce. Our work lays the foundation for further research and innovation
in this exciting field.
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