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Abstract

Booking curves are a normalized measure of the proportion of the demand for seats in
each flight as a function of the time before its departure. Their estimation is central to the
operation and revenue maximization of commercial airlines. This case study addresses
this problem as posed by Airfrance-KLM, a European airline with worldwide operations.
Currently, Airfrance-KLM uses hard-coded rules based on expert knowledge to estimate
the booking curves. These rules decide what the demand will be using features of each
flight (such as its origin, destination, and many others) for estimation. This report ad-
dresses the challenge of implementing a data-driven approach for the task, as posed by
the company members. It is shown that this problem is amenable to multivariate regres-
sion techniques, and the performance of several state-of-the-art methods is assessed on
sample data. These methods include tree-based methods like random forests and light
gradient boosting machines.
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1 Introduction
Airfrance-KLM is an airline holding that operates flights to roughly 300 destinations, carrying
over 70 million passengers yearly (KLM, 2024). Two passengers traveling next to each other
may have paid different prices for their seats. This is because the price of a ticket is changed
dynamically during the booking window; the time from the moment when seats become
available for purchase to the time of departure of the flight. Flight and client-specific data
are used to determine a pricing strategy with the goal of revenue maximization. These data –
which serve as input features – include, among others, the time of the day, the season of the
year, the length of the stay, whether it is a one-way or round-trip ticket, and the purpose of
the travel.

Since clients are willing to pay different prices at different moments of the booking win-
dow, any dynamic pricing strategy will need accurate temporal forecasts of the demand for
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seats in each plane. For example, business travelers typically make their bookings closer
to departure time and are willing to pay more. This means two things: (1) Prices should be
higher at the end of the booking window for this type of customer, and (2) prices earlier in the
booking window need to be high enough so that not all seats are sold before this final stage.
This is clearly a delicate task. As this example shows, these demand forecasts are expected
to benefit from using flight and client-specific data, as mentioned above.

The analysts of Airfrance-KLM divide their problem of forecasting the demand for each
flight into four separate estimation problems.

1. How many seats will be sold (total demand);

2. Customers’ willingness to pay for a seat (price elasticity);

3. How many seats can be sold accounting for possible clients that do not show up to a
flight (capacity);

4. When the seats will be sold (booking curve).

The final item, the estimation of the booking curve, is the subject of this study case.
The booking curve represents the course over time of the number of tickets that are sold

relative to the total demand over the whole booking window. Since the company effectively
intervenes in the demand of each flight with its dynamic pricing strategies, the booking curves
are normalized so that they are comparable across flights. Booking curves are decreasing
functions of the time before departure, and decrease from its value of 1 at the moment of
departure, when 100% of its demand has been satisfied, to 0 at the moment when the booking
window begins and no seats have been sold.

The fact that estimation is performed using past data tacitly assumes that past booking
curves are informative for future ones. This assumption may be problematic as the shape
of booking curves may be non-stationary over time. For example, the shape of booking
curves may be affected during special events (for example, a big sports event), or years of
altered demand (for example, during the 2020 world pandemic). In such cases, the flights are
priced by hand by Airfrance-KLM employees. The non-stationarity of the booking curves is
therefore not addressed in this report.

In this report, we address the problem of estimating booking curves as a function of time
before departure using historical data. In particular, we show that this problem is amenable
to standard multivariate regression methods. In Section 2, we describe the data that was
made available by Airfrance-KLM. In Section 3, we describe the methods that we use to
tackle the estimation problem. In particular, we show how the problem fits in the framework
of multivariate regression and briefly describe the regression models that we fitted and the
performance metrics that were considered. These methods include linear regression and tree-
based methods like random forests and light gradient boosting machines (LightGBM). In
Section 4, we show the results from fitting different models using a random train/test data split
and optimizing several standard metrics of performance for regression. Interestingly, since
the booking curves resemble cumulative probability distribution functions, distance metrics
that can be applied to such functions can also be used to measure the distance between curves.
One family of standard metrics between probability distributions is the Wasserstein distance
(see Section 3 for more details).
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2 Data
The data set made available by Airfrance-KLM consists of n = 351820 curves. Each curve
describes the historical demand for a flight during thirty time intervals (called time frames)
prior to the departure of the flight. Each curve is accompanied by a number of flight and
client-specific features (see Table 1). Here, the demand index is a real number that has been
normalized in such a way that demands for different flights and passenger types are com-
parable. From this demand index, the booking curve—our main object of interest—can be
constructed by dividing the cumulative demand over time by the total demand over the 30
time intervals, as illustrated in Figure 1.

Figure 1: Booking curves for different flights and passenger types.

Feature Description
Date Date of the flight (dd-mm-yyyy)
Origin Codifies the origin airport
Destination Codifies the destination airport
Sell-up group One of 18 client-specific features
Connection indicator Whether the passenger is connecting outside the AFKL network.
Commencement point Original starting country of the trip of the passenger

Table 1: Features of each demand curve. Each demand curve is given at 30 time intervals
before flight departure (see Section 2).

In Table 1, client-specific features are included under the sell-up group features. This sell-
up group contains 18 client-specific features including the cabin (first class, economy, etc.); a
booking type (whether the seat was acquired with miles, with a regular payment, or other); a
return type (whether the curve is for one way, round trip or all passengers); connection type;
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type of haul (long or short haul); dominant airline (Airfrance of KLM); and passenger profile
(business, leisure or special passengers).

3 Methods
This section describes the methods that were used to tackle the problem described in the
previous sections of estimating booking curves. In Section 3.1, we describe the setting of
multivariate regression and the method based on a training-test split of the data available to
assess the performance of the predictors. In Section

3.1 Fitting multivariate regressors
We formalize the estimation of booking curves as a multivariate regression problem. We
are given historical data {x⃗i, y⃗i}

n
i=1, where the y⃗i ∈ [0, 1]T (T = 30) are the booking curves

and the x⃗i are k-dimensional vector of covariates (see Section 2 for a more detailed data
description). Here, T = 30 denotes the number of time frames in which the booking window
is separated. The restriction on y⃗i is then that at the earliest time frame (i = 1), the value is 0,
and at the latest time frame (i = 30), it is 1. The space X where each feature vector x⃗i takes
values signifies all possible combinations of features, and is the product of some finite sets of
categories and some subsets of the real number line. In Section 3.2, we briefly discuss how
we deal with categorical values in practice.

The goal is to use these data to construct an estimator f̂ : X → [0, 1]T . This estimator
takes as inputs vectors of features (vectors in X) and outputs booking curves (vectors in
[0, 1]T ). Given a vector of features x⃗, f̂ (x⃗) is our estimate of the booking curve corresponding
to the flight and passenger group encoded in x⃗. As we will see in the next section, we consider
predictors such as linear regressors and decision-based trees.

To evaluate the performance of predictors, we will consider several loss functions L :
[0, 1]T × [0, 1]T → R, where L( f̂ (x⃗), y⃗) is to be understood as the loss that is incurred when
one predicts f̂ (x⃗), while the actual booking curve was represented by y⃗. A standard approach
is to regard the available data as a random sample from an unknown distribution, and to look
for the prediction method that minimizes the risk, or expected loss, i.e.,

E(x⃗,⃗y)[L( f̂ (x⃗), y⃗)],

over all valid predictors—for example, all linear functions or all tree regressors—and the
expectation is taken with respect to the underlying (unknown) distribution that generates
the features/booking curves (Vapnik, 1991). Since this distribution of the data is generally
unknown and too complicated to be estimated accurately, there is no way to compute exactly
the loss in the previous display. Instead, we divide the data into a training and a test and use
the test data to estimate the performance of predictors f̂train trained on the training set. Thus,
as a proxy for the expected risk in the previous display, we use empirical risk in the test set

1
ntest

∑
i∈test

L( f̂train(x⃗i), y⃗i),
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where the sum is over the data in the training set and ntest is the number of data points in the
test set. After training and fitting a number of models f̂train,1, . . . , f̂train,k on the training set, we
deem as best the model that minimizes the empirical risk over the test set.

In the following, we will consider the following loss functions:

1. The mean squared error given by LMSE(y⃗′, y⃗) = 1
T
∑T

i=1(y′i − yi)2 for y⃗, y⃗′ ∈ [0, 1], which
corresponds to the scaled and squared Euclidean distance.

2. The relative mean squared error given by LARMSE(y⃗′, y⃗) =
∑T

i=1(y′i−yi)∑T
i=1(yi−ȳ)

, where ȳ = 1
T
∑T

i=1 yi.

3. The Wasserstein loss given by LWAS(y⃗′, y⃗) = W2(y⃗′, y⃗), where W2 denotes the Wasser-
stein 2-distance (Villani, 2009).

3.2 Preprocessing

The specific date of each historical flight is not predictive of the booking curves of future
flights, but the day of the week and month are expected to be. We extract these from the dates
of the historical flights.

The implementation of many regression methods does not accept categorical variables.
However, this can be dealt with in a number of standard ways. We convert the categorical
variables using a One-Hot-Encoder. This type of encoding transforms each categorical fea-
ture with m possible values into m binary features, with one of them 1, and all others 0. For
example, the categorical variable ‘day of the week’ is transformed to seven (one for each day
of the week) zero-one-valued categorical variables.

We use smoothing on the booking curves. The data provided presents demand for 30 time
frames leading up to flight departure, with each time frame representing a specific number
of days. However, this data reflects ticket bookings rather than actual demand, resulting in
observing zero demand across several time frames. If the booking curves are interpreted as
observations of an underlying true positive ‘demand process,’ smoothing techniques can be
used to estimate the demand in moments of zero demand using the demands of the adjacent
time points. Various methods exist for smoothing time-series data, including moving aver-
ages, exponential smoothing, and kernel smoothing. The selection of an appropriate smooth-
ing technique depends on understanding the characteristics of the data, and on the time scale
of the observations. Exponential smoothing is a simple strategy (with minimal parameter tun-
ing) where recent past observations are given higher weight in the smoothing process. Simple
exponential smoothing techniques have been employed within the airline industry to model
booking curves (Weatherford, 2016; Shintani and Umeno, 2023). However, given that the
time frames are not necessarily spaced equally in time, it remains to see whether smoothing
in this time scale is representative of the true demand processes under consideration.

Finally, we randomly perform an 80/20-split of the data in a train and a test set. All of the
models discussed in the following are trained on the train set and evaluated on the test set.
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3.3 Linear Regression
A machine learning model may have several features, but some features might have a higher
impact on the output than others. For example, if a model is predicting flight demands, the
weekday might have a higher impact on the output than the airport destination. Hence, we
need to come up with the concept of weights.

Each feature is associated with a weight, i.e., the higher the feature has an impact on the
output, the larger the weight associated with it. To find the proper weight for each feature,
we need to apply the gradient descent method.

Gradient descent is an optimization algorithm that helps to find the optimal weights for
the model. It uses a cost function to find the proper weights that fit the model in the best way.
The cost function is defined based on the difference between the actual output (demand) and
the predicted output. We consider the following cost function:

J(θ) =
1

2m

m∑
i=1

(
h(X(i), θ) − y(i)

)2
, (1)

where m is the number of data points, h(X(i)) is the output of our hypothesis for a particular
value of i, and y(i) is the value of the exact output which in our example is demand. We
consider the following function as a predicted value for demand:

h(X) = β + θX, (2)

where β is the bias, X is the vector of features and the vector θ is the weights. The goal is to
find a minimum of a cost function. To do this, we use the gradient descent formula:

θ j := θ j − α
∂

∂θ
J(θ). (3)

As you can see, the learning rate of gradient descent plays a crucial role in this formula. The
large learning rate can give us poor values for β and θ. To understand which value of learning
rate is better for data sets, we plot the cost function for 500 iterations and compare the results
with different values of learning rate.

3.4 Decision-tree-based Methods
3.4.1 Decision Tree Regression

Decision trees are non-parametric supervised learning algorithms for classification and re-
gression tasks (Breiman, 2017). They aim to predict the value of a target variable by learning
simple decision rules (if-then-else) inferred from the data features. Formally, a decision tree
recursively partitions the feature space such that the samples with the same labels or similar
target values are grouped together. Setting a fixed maximum depth for the tree, at a node k,
each candidate split of the feature space is presented by two elements: a feature index j ∈ N
and a threshold tk ∈ R, in order to partition the data into two subsets: {(x, y)|x j ≤ tk} and
{(x, y)|x j > tk}. The quality of a candidate split of the node is assessed using an impurity, or



Estimating the Booking Curve 7

loss, function H, which essentially captures how well the data is grouped together. We opt
for the combination ( j, tk) that minimizes the impurity. Once the maximum depth is reached,
each leaf node is assigned the average target value of the training data that lands in that leaf
node. For a new set of features, the predicted value is equal to the value of the leaf node that
it ends up in.

x2 ≤ 5

x1 ≥ 1.2

3 6.5

x3 ≤ 0.5

x1 ≥ 2

7 8

1

Figure 2: Example of a decision tree with a uni-variate target value.

This procedure can be refined by considering multiple features at each time to split on,
which vastly increases the number of possibilities. Similarly, one often does not only want to
specify a maximum depth, but also a minimum number of samples that is required to further
split the data, as well as the minimum number of samples that is required to be in each leaf
node (to avoid overfitting). Together, these parameters determine whether or not the recursive
splitting will be terminated at a certain point in the tree. It can, therefore, happen that the tree
is deeper in one ‘direction’ than in another; an example is given in Figure 2. Ideally, all of the
parameters should be chosen in a systematic way, e.g., through cross validation. However,
due to the time constraints of this project, we have simply set what we deemed ‘reasonable’
values for all of the parameters.

In our case, we use a decision tree as a regression algorithm to estimate the booking curve
over 30 time frames. Since this is a problem with several outputs to predict, we can proceed
in one of two ways:

• build a single tree model capable of predicting simultaneously all 30 outputs, i.e. the
whole booking curve, with the underlying assumption that the outputs are correlated.

• assume there is no correlation between the outputs and build 30 independent models,
one for each time frame, and then use those models to independently predict each one
of the 30 outputs.

Since the outputs for different time frames seem uncorrelated, we opt for the latter imple-
mentation. The one downside to this approach is that the predicted booking curves are not
necessarily strictly increasing, even though this is the case in the data. To compensate for
this, we take the running maximum.
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3.4.2 Random Forests

While decision trees are highly useful because of their simplicity and interpretability, they
suffer a lot from overfitting to the data. One way to overcome this is through the use of random
forests. Random forests are a way of averaging multiple decision trees trained on different
parts of the data, which reduces the variance of the method (Ho, 1995; Breiman, 2017). This
often leads to better performance, but the downside is that the method is less interpretable.
The algorithm for training random forests essentially applies the bootstrap and aggregating
(bagging) approach with some extra randomization; it is described in Algorithm 1. After
training, predictions can be made by averaging the predictions made by the individual trees
that make up the random forest. The training procedure for random forests obviously takes
longer than for a single decision tree, so we have chosen here to train a single random forest
that predicts all 30 outputs at once due to time constraints. Furthermore, as above, we have
simply chosen reasonable settings for the involved hyperparameters.

Algorithm 1: Random forest training
Input: Number of trees B, number of training samples K, number of features p

1 for b = 1 to B do
2 Randomly sample K training examples from {(x⃗i, y⃗i)}ni=1 with replacement;
3 Train a decision tree on the bootstrapped data set, using p randomly chosen

features at each split;
4 end

An advantage of the random forest over other methods of aggregating decision trees is that
the predictions can be accompanied by a confidence interval (Zhang et al., 2019). This stems
from the fact that, for each data point i, there is a sub-forest of roughly the size exp(−1)B that
is trained without using i-th data point. We can evaluate how far off this sub-forest is when
predicting y⃗i, i.e. consider ŷsub − y⃗i. This can be done for all data points, after which we can
consider the α-quantile and the (1−α)-quantile of the sub-forest prediction errors and output
those as error margins around our estimate. If data are i.i.d., then this is an asymptotically
valid (1 − α) confidence interval as n, and B go to infinity (see (Zhang et al., 2019, Section
3) for the underlying assumptions). We have confirmed on the test set that the confidence
intervals that this procedure generates indeed contain the true value in roughly (1 − α) of the
cases. For the other methods considered, we have not found a similar procedure.

3.4.3 Light Gradient Boosting Machine

Similar to a random forest, the gradient boosting machine (GBM) (Friedman (2001)) is also
an ensemble model of decision trees. But, unlike random forest regressors, the decision trees
in a gradient-boosting machine are trained sequentially. Each new decision tree is trained on
the residuals of the predictions from the previous ensemble of trees. This improves accuracy
but is inefficient for high feature dimensions and large data sizes. The most computationally
expensive part of training a decision tree is finding the best-split point. In conventional gradi-
ent boosting, this is done by scanning all data to estimate the information gain of all possible
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splits for each feature.
Light gradient boosting machine (LightGBM) (Ke et al. (2017)) significantly improves

the efficiency of GBM using two key techniques. Firstly, data instances with small resid-
uals are excluded as data instances with larger residuals are more important in calculating
information gain. This technique called gradient-based one-side sampling (GOSS), signifi-
cantly reduces the data size. Secondly, a technique called exclusive feature bundling (EFB)
reduces the effective feature size using a greedy algorithm to bundle features based on their
exclusivity, i.e., features that rarely take non-zero values simultaneously.

3.4.4 Feature Importance

Besides the interpretability, a big advantage of decision-tree-based methods is that they can
be associated with a natural measure of feature importance. Indeed, for each feature, one
can consider how much the impurity in the samples decreases on average when this feature
is used to split the data. This gives an idea of the quality of the splits in which a feature is
involved.

4 Results

4.1 Linear Regression

In Figure 3, we show the predicted value for demand based on the gradient descent method. In
this method, we use the numerical values of data. The values used in this figure correspond to
columns, ‘DAY’, ‘MONTH’, and ‘PRICING CAB LVL’. We also illustrated the cumulative
demand over time with three predicted curves corresponding to different values of α in Figure
4.

Figure 3: Mean value of demand based on time frame is displayed in the left panel. The right
panel displays the cost function of the Gradient descent method based on iterations.



10 SWI 2024 Proceedings

Figure 4: Cumulative demand values over time frame with different values of learning rate α.

4.2 Decision-tree-based Methods

The performance of the different tree-based methods described in Section 3.4 in terms of the
four different loss functions described in Section 3 is given in Table 2. Since the LGBM
model seems to work slightly better than the other methods, we plot the feature importance
(see Section 3.4.4) according to this model in Figure 5. Examples of the predicted curves for
three selected elements of the test set are given in Figure 6.

Wasserstein
distance

Mean
squared error

Relative mean
squared error

Decision tree 0.1648 0.0645 0.3652
Random forest 0.1639 0.0663 0.4560

LightGBM 0.1565 0.0604 0.3468

Table 2: The average loss of the tree-based methods on the test set relative to four different
loss functions. The smallest loss is indicated in bold.

5 Discussion

We have considered different methods for predicting the booking curves of future flights. Be-
cause of the high computational load of the method described in Section 4.1, the analyses that
we have carried out are most comparable among the decision-tree-based methods (see 3.4),
so we will mostly restrict our discussion to those. With regard to the loss functions considered
here, it is clear that there is very little difference in performance between a simple decision
tree, a random forest, and the light gradient boosted machine. However, if one is interested
in uncertainty quantification, then a random forest seems the way to go. Nevertheless, the
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Figure 5: Feature importances according to LGBM.

LGBM seems to have a slight advantage in most cases. The features with the most predictive
power seem to be, by far, the month of the flight and the day of the week.

An important point to remember is that both the decision tree and the LGBM were trained
to predict each output separately, while the random forest was trained for the whole booking
curve. It can be seen from the predicted curves in Figure 6 that this causes the latter to predict
smoother curves, ignoring some trends in the data. Since the performance is already so close,
it would be an interesting future endeavor to see how this changes when a random forest
is trained for each output. Finally, it would be interesting to see how well the method in
Section 4.1 does when the features are chosen according to the feature importances that are
output by LGBM.
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Figure 6: Three observed booking curves in the test set and the corresponding predictions by
the tree-based methods.

References
Leo Breiman. Classification and regression trees. Routledge, 2017.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals
of statistics, pages 1189–1232, 2001.

Tin Kam Ho. Random decision forests. In Proceedings of 3rd international conference on
document analysis and recognition, volume 1, pages 278–282. IEEE, 1995.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in
neural information processing systems, 30, 2017.

Air France KLM. About air france klm, 2024. URL https://www.klm.nl/en/
information/corporate/about-air-france-klm.

Masaru Shintani and Ken Umeno. Average booking curves draw exponential functions. Sci-
entific Reports, 13(1):15773, 2023.

https://www.klm.nl/en/information/corporate/about-air-france-klm
https://www.klm.nl/en/information/corporate/about-air-france-klm


Estimating the Booking Curve 13

Vladimir Vapnik. Principles of risk minimization for learning theory. Advances in neural
information processing systems, 4, 1991.

Cédric Villani. The Wasserstein distances, pages 93–111. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009. ISBN 978-3-540-71050-9. doi: 10.1007/978-3-540-71050-9_6. URL
https://doi.org/10.1007/978-3-540-71050-9_6.

Larry Weatherford. The history of forecasting models in revenue management. Journal of
Revenue and Pricing Management, 15:212–221, 2016.

Haozhe Zhang, Joshua Zimmerman, Dan Nettleton, and Daniel J Nordman. Random forest
prediction intervals. The American Statistician, 2019.

https://doi.org/10.1007/978-3-540-71050-9_6

	Introduction
	Data
	Methods
	Fitting multivariate regressors
	Preprocessing
	Linear Regression
	Decision-tree-based Methods
	Decision Tree Regression
	Random Forests
	Light Gradient Boosting Machine
	Feature Importance


	Results
	Linear Regression
	Decision-tree-based Methods

	Discussion

