
Optimizing stocking strategy for bakeries

Willem deMuinck Keizer1, Naqi Huang1, Haojin Li2,
MichaelMuskulus3, Marco Saltini2, Luke Visser4

Abstract

It is a challenge for bakeries to stock in a way that maximizes sales while minimizing
leftover stock. The basic model often used is known as the newsvendor model. This
model does not consider interaction between sales, such as substitution. We propose
several ways to address these interactions. First, we propose an augmented newsvendor
model which takes substitution into account. Second, we model a typical day of sales with
a large-scale stochastic simulation. Finally, we develop a probabilistic evolution method
to calculate expected profit numerically. These methods may be used to test stocking
strategies, and we provide additional methods for optimization. With this, we aim to
provide bakeries with ways to improve their stocking strategy.

Keywords: stocking strategies, multiproduct newsvendor, stochastic simulations, proba-
bility density evolution, optimization.

1 Introduction
We investigated the problem of finding an optimal stocking strategy in the case of a bakery.
In particular, we looked at the effect of substitution sales: a customer turns up to purchase
a product but finds it being sold out and either leaves or purchases a different product. Fur-
thermore, we also investigated the influence of multi-product sales and set up a simulation
model that can take stock-dependent preferences into account. In Table 1, we summarize our
notational conventions.

For a simple model with no substitutions, the optimal stocking level qi for product i is the
solution to the newsvendor problem

qi = F−1
i ((pi − ci)/pi), (1)

where Fi is the cumulative distribution function of demand, pi the retail price of the product,
and ci the production cost (Arrow et al., 1951; Qin et al., 2011). This solution depends on
the distribution of the demand for each product and on the profit margins. If we do allow

1Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands
2Mathematical & Statistical Methods, Plant Science Group, Wageningen University, The Netherlands
3Department of Civil and Environmental Engineering, NTNU, Trondheim, Norway
4Department of Mathematics and Computer Science, Eindhoven University of Technology, The Netherlands

2 SWI 2024 Proceedings

for substitutions, the bakery will not only sell to the direct demand but also to people who
switched because their initial choice was out of stock. As a result, the total demand will
increase by adding substitutions.

Table 1: Notations, based on the conventions used in Smith and Agrawal (2000).

Indices
n Types of cakes (i ∈ {1, . . . , n})
m Type of potential purchase (which cake i, or which multiset bi of cakes

in case of multi-item purchases)
Parameters
p = (p1, . . . , pn) Prices of each cake i written as a vector
c = (c1, . . . , cn) Costs of each cake i written as a vector
q = (q1, . . . , qn) Stock levels of each cake i written as a vector
q0 Initial stock levels at the beginning of a period
q∗ Optimal stock levels at the beginning of a period
Q = (Q)q Probability of having certain stock levels, indexed by q
∆Q Change in stock probabilities due to customer actions
r(q) Revenue obtained for given initial stock levels q
D Total demand
Di Demand for the i-th cake
K Total number of customers arriving per cycle
ψ(k) P{K = k}
pe(k) Probability that a k-th customer exists on a given day
µ Customer arrival rate /Mean number of customers
fi P{costumer initially prefers the i-th cake/multi-item purchase}
Ki(fi) Total number of costumers initially preferring the i-th cake
ψi(ki| fi) P{Ki(fi) = ki}

αi j P{customer switches to cake j | cake i was not available}
ai j Same as αi j, but generalized to multi-item purchases
A = (ai j)i, j Customer switching probabilities written as a m-by-m matrix
α Symmetric switching probability for first two customer preferences,

α = a12 = a21
bi Multiset of items for the i-th purchase/customer preference
B = (bi j)i, j Number of desired items (index j) for each purchase (index i), written

as a m-by-n matrix
β Desired service level for first stock
β∗ Actual service levels for each stock

Throughout this model, we make some assumptions about general customer behavior and
determine some parameters that can be used to tailor the model to individual bakeries.

One of the more important sets of parameters is fi, which is the probability that a person
initially wishes to purchase product i. These parameters may be inferred by considering
market shares or by overstocking and considering sales data. If the products are independent,

Optimizing stocking strategy for bakeries 3

then fi may be calculated from historical sales data directly by dividing sales of product
i by the total number of customers per day. One may argue that the fi can be calculated
from past sales data in this way too. Though the fi thus calculated are already influenced by
stocking policy and substitutions, most bakeries will naturally stock in such a way that all
their products go out of stock near the end of the day. This results in a natural balancing that
ensures that the estimated preferences lie reasonably close to the real preference fi.

Given the probabilities of initial preference, we now take substitution into account in our
stocking policy. In Smith and Agrawal (2000), it is shown that the optimal stocking strategy
with substitution can be found by first finding the net demand for a product as the sum of
the direct demand and the demand due to substitutions. The optimal stocking strategy is
then the solution of the newsvendor problem for independent products 1, but now with Fi the
cumulative distribution of the net demand. To calculate this new net demand distribution, we
need to make two assumptions on the initial distributions of the number of customers.

We first assume that the total number of customers K follows a negative binomial distri-
bution

ψ(k) =
(
N + k − 1

N − 1

)
pN(1 − p)ki , (2)

for some values of p and N inferred from data. For the demand of the individual products,
this results in a negative binomial distribution

ψi(ki| fi) =
(
N + ki − 1

N − 1

)
yN

i (1 − yi)ki , (3)

where yi = p/[p − fi(1 − p)] Smith and Agrawal (2000). The negative binomial distribution
has two parameters N and p compared to the one parameter λ of the Poisson distribution. In
the limit of p→ 1, N → ∞ such that the expected value N(1 − p)/p is constant, the negative
binomial distribution converges to a Poisson distribution.

For our simulations, we only have information on the expected sales value. Since the
negative binomial is then over-parameterized, we choose the parameters such that we ap-
proximate a Poisson distribution. Thus, we set p = 0.99, and we let N be such that the mean
of the distribution is equal to the mean of the sales data.

The second assumption is that we assume that the customers that switch from a product
j , i to product i do not change the number of customers that switch away from product i
if i itself is out of stock. This strictly underestimates the expected number of customers that
switch away from product i. The assumption gives a good approximation if the customers
switch only once if their initial preference is not there and if either the number of people
that switch is small compared to the total initial demand or if all products go out of stock at
roughly the same time during the day.

Under this assumption and with a given stocking policy qi, the probability that a customer
initially preferring product i arrives and finds product i out of stock is, on average, over the
number of cycles given by

Ai =
1

E(Ki(fi))

∞∑
qi=ki

(ki − qi)ψi(ki| fi),

4 SWI 2024 Proceedings

where (ki − qi)ψi(ki| fi) is the number of customers that find a product out of stock multiplied
by the probability of that amount of customers arriving on a given day. Multiplying this with
the switching probability and summing over all possible substitutions gives us the probability
of a person wishing to purchase product i as

Ri = fi +
∑
i, j

f jαi jA j,

where the term f jαi jA j captures the probability that a person initially prefers item j, finds it
out of stock, and switches to item i. Let us mention that the paper Smith and Agrawal (2000)
uses the upper bound

Ri = fi +
∑
i, j

f jαi j(1 − ri),

where ri is the service rate. The service rate ri is the probability of running out of stock on a
given day.

With either of these new probabilities, the new distribution of the demand for product i is
given by the negative binomial distribution of equation 3 with

yi = p/[p − Ri(1 − p)].

Knowing the new net distribution of the demand, we can find the optimal stocking strategy
from the solution of the newsvendor problem.

In Figure 1, one can see that with a relatively high substitution rate of 50% between only
two products, the change in the demand is small. For the given stocking rates, the inclusion
of substitution increases the optimal stocking strategy with only one product: from 18 to 19
for product 1 and from 7 to 8 for product 2.

In short, we still use newsvendor, but perturb the distributions to take substitution into
account. We suggest that BuyFresh considers the above alternative stocking policies and
tests these with either the probabilistic simulation or the computational approach worked out
in the following sections.

2 Large-scale simulations: a day in the bakery
In this section, we take a practical approach to address this problem. Considering the com-
plexity of customer behavior, our primary focus is on examining the scenario when customers
substitute one product for another. We use the data from the bakery shop, which is presented
in Table 2. The data consists of 10 distinct cakes categorized into 5 types, each of which
comes in 2 varying sizes. Our objective is to find the optimal stocking strategy for each cake
by simulating customer behaviors. More specifically, we aim to find the initial stocks of cakes
that maximize the profit, i.e

max
q1,q2....q10

{p|p =
10∑
i=1

(pisi − ciqi)}, (4)

where si is the number of cake i sold. See description of other notions in Table 1.

Optimizing stocking strategy for bakeries 5

0 5 10 15 20 25 30 35 40
Demand

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

di
st

rib
ut

io
n

stockrate
CDF independent
CDF with substitution

Figure 1: Comparison between demand without substitution and with substitution, with a
given price-dependent optimal stocking rate. The expected total demand without
substitution is E[D] = 30, the initial preferences are f1 = 2/3, f2 = 1/3, the substitution
rates are α12 = α21 = 0.5, and stocking rates are given by r1 = (p1 − c1)/p1 = 0.4 and
r2 = (p2 − c2)/p2 = 3/13.

2.1 Model assumptions and parameters setup
We set up our assumptions and the other parameters needed in our simulation as follows:

1. The number of customers K is fixed at 200 per day.

2. The number of cakes each customer buys is drawn from the probability mass function
shown in Table 3. Note that more realistic probabilities can be obtained from sale data.

3. Choice of the initial cake(s): we chose the initial cake by drawing randomly from
a distribution taken from the frequency data of cake sales. In our experiment, the
probability that each customer buys cake i is the ratio of the demand for cake i and the
total demand for all cakes (the data is shown in Table 2). For customers buying two or
three cakes, it can happen that their initial choice is to buy two or three cakes of the
same type.

4. Substitution rule: if the preferred cake is out of stock, a customer buys the larger (or
smaller) size cake of the same type with probability α, or a different cake of the same
size as the initially selected one with probability (1 − α))/5 each. If the replacement is
also not there, the customer leaves without buying anything. Note that this approach
includes a probability of (1− α)/5 to leave the shop immediately (i.e., the replacement
is exactly the original cake). In our model, when customers want to buy more than
one cake, they leave the shop if they cannot find one replacement for each of the two or
three. Generalization to other types of behavior is possible by making minor changes to

6 SWI 2024 Proceedings

Table 2: The price, cost, and demand of all available types of vlaai.

Product ID Product Price Cost Demand

1 Cherry Vlaai L 15,25 8,97 25
2 Apricot Vlaai L 16,25 9,64 10
3 Fruit Vlaai L 27,5 15,5 6
4 Butter Crumb Vlaai L 15,25 9,35 18
5 Apple Crumble Vlaai L 14,29 8,76 14
6 Cherry Vlaai S 9,95 6,4 30
7 Apricot Vlaai S 10,5 5,1 32
8 Fruit Vlaai S 14,99 7,5 16
9 Butter Crumb Vlaai S 10,99 6,87 31
10 Apple Crumble Vlaai S 10,5 6,5 21

Table 3: Probabilistic mass for number of cakes bought by one customer.

Number of cakes 1 2 3
Probability 0.7 0.25 0.05

the code. Note that α is a free, adaptable parameter, and it is set to 0.5 in our experiment
run. Ideally, we can calculate the stocking policy as a function of that free parameter.
The process is illustrated in Figure 2.

5. We repeat this simulation for 100 days and optimize the total profit based on the aver-
age.

2.2 Simulation method and result
The simulation is done on a DELL laptop with Inter Core 7-10610U CPU@1.80GHz and
16GB memory using Python. First, we examine how the total profit changes with different
stocking strategies by varying the ratio of initial stocks and the demands of the cakes, see in
Figure 3.

It can be seen in Figure 3 that based on the demand data, shop owners can gain more profit
to maintain a slightly higher stock level than the demand. Beyond a certain point, increasing
the stock further leads to a decrease in the total profit due to the increased number of unsold
products. It is worth noting that the relationship between total profit and the demand shown
in Figure 3 suggests an approximate quadratic relationship between them, worth digging into
further.

Next, we aim to optimize the total profit over all possible stocking options. After small
exploratory runs, we estimate that the initial stocks of each cake individually should lie within
the interval [0, 60]. These bounds can always be easily adjusted and refined if more data
and restrictions are taken into account. Given that the objective function we are optimizing

Optimizing stocking strategy for bakeries 7

is there
cake i?

is there
a replacement?

is there
cake j?

is there
s/L version

of i?

buy
cake i

buy cake j
instead

buy s/L version
of cake j
instead

leave
the shop

no

no no

yes

probability to select the
smaller/Larger version of i:

α

for each j of the same size,
probability to select j:

(1-α)/(n/2)

yes yes

enter
the shop

Figure 2: Flow chart of stochastic simulations.

cannot be expressed analytically and includes randomness, a heuristic algorithm to solve this
optimization problem is more suitable for this scenario. In our experiments, we chose Genetic
Algorithm as our optimization method (Mitchell, 1966). The number of generations is set as
100, the mutation rate is 0.1, and the crossover rate is 0.8. The maximal profit achieved is
1222 euros under the stocking strategy shown in Table 4.

In Figure 4, we compare the demand, initial stock, and leftover for each cake, and we can
see that interestingly, in the best stocking strategy achieved (listed in Table 4), the demand
for a certain product can outnumber the initial stock. This is due to the introduction of sub-
stitution rules among products. Also, note that this latter result is influenced by our choice
to consider optimization of stocking policies based on the customer behavior and sales av-
eraged over 100 days. A more comprehensive and future study should aim to incorporate
higher moments of profit distribution into the optimization process rather than focusing only
on the average quantities.

Table 4: Optimal Stock Levels of Cakes

Cake Id 1 2 3 4 5 6 7 8 9 10
Optimal stock 29 15 9 29 15 41 35 22 22 29

3 Probabilistic simulation
A third approach that was considered is the probability density evolution method. This is
a general method that can be used to obtain accurate answers for probabilistic problems in-
volving some kind of dynamics. It is similar to Monte Carlo simulation in that the state of
a system and its evolution over time is calculated. However, instead of simulating one or
more realizations, moving a single state through time, in the probability density evolution

8 SWI 2024 Proceedings

Figure 3: Total profit as a function of the initial stock. Values on the horizontal axis are the
multiplicative factors to the initial stock based on the demands listed in Table 2, and

approximated to the nearest integer.

Figure 4: Comparison of demand, stock, and leftover under optimal profit averaged over
100 days of sales.

Optimizing stocking strategy for bakeries 9

approach, we keep track of all possibilities and instead evolve the probability distribution of
finding the system in different states. In other words, this is a type of probabilistic simulation
in which all possible outcomes are considered and kept track of.

The probability density evolution method is usually formulated in a continuous setting
(Li, 2016) and can seem somewhat intimidating, but it becomes rather straightforward in a
discrete setting, Indeed, if we consider the state of the bakery to be fully described by the
number of items q = (q1, . . . , qn) ∈ Nn

0 currently in stock, the probability density evolution
approach fits the problem quite naturally. Since the stock levels qi ≥ 0 are discrete, we can
expect the probability density evolution approach to generate exact results.

The approach used here is summarized in Algorithm 1. Starting from given initial stock
levels q0 = (q0,1, . . . , q0,n) ∈ Nn

0, the actions of a sequence k = 1, 2, . . . of customers are eval-
uated, leading to changes of the stock. The number of customers K is described by a proba-
bility distribution. For example, we can use the negative binomial distribution fK(k) = Ψ(k)
from above and its distribution function FK(k) = Prob(K ≤ k). We iterate over the customers
one by one. Since this is a probabilistic simulation, we need to consider the probability

pe(k) = Prob(K ≥ k) = 1 − Prob(K ≤ k − 1) = 1 − FK(k − 1), (5)

that there exists a k-th customer and its inverse 1 − pe(k). The number of customers is inher-
ently stochastic, so we iterate over a potentially infinite number of customers. However, the
probability pe(k) falls off quickly for large values of k, and in practice, we stop the simulation
once pe(k) < ϵ for some small constant ϵ. For example, a typical value would be ϵ = 10−8,
the square root of machine precision (Press, 2007).

If the evolution of stock levels takes place independently of each other, we could use
vectors for each stock to keep track of the probability mass distribution of the level of each
item. However, since we want to consider questions of dependence between items, we need
to consider the joint distribution of the stock levels of all (correlated) items. We therefore
represent their joint probability mass distribution by Q = Qi1,i2,...,in , where each index ik runs
from 0 (no stock left) to the initial stock level q0,k. Computationally, Q is represented as a n-
dimensional array of size q0,1 × · · · × q0,n. Obviously, the size of Q increases exponentially in
the number of dependent items we are tracking, and this curse of dimensionality is a limitation
of the method. In the following, we are mostly concerned with the case of two distinct items,
so for reasons of clarity, let us assume this from now on and write Q = Qi, j.

The initial stock level is represented by

Q0 =

1.0, for (i, j) = (q0,1, q0,2),
0.0, else.

(6)

For each customer, the matrix Q = Qi j is then updated to take into account the actions of the
customer. For example, for the first customer (k = 1), we calculate:

Q1 = pe(1)∆Q0 + (1 − pe(1))Q0. (7)

Here ∆Q0 = ∆(Q0) describes the result of the actions of the customer, described below,
whereas the second term represents the case that no customer is coming to the shop during
this period (with probability 1 − pe(1)).

10 SWI 2024 Proceedings

Algorithm 1: Probabilistic simulation of stock levels
Input: Initial stock levels q0 ∈ N

n
0 for n different stocks, a set of customers with

preferences fi, switching matrices ai j, and purchase matrices bi j

Output: Stock level probability distribution Q = Qi1,...,in at end of period
Q← 0q0 ; // Empty array, one dimension for each item
Q[q0]← 1.0; // Initial stock has probability 1
k ← 0; // Number of customers
while True do

k ← k + 1; // Consider another customer
for all different customer types do

p← pe(k); // Probability of k-th customer of this type
// Initialize temporary array Q1
Q1 ← (1 − p)Q; // No customer, no change in stock
// Consider all currently possible stock levels
for all q such that Q[q] > 0 do
// Consider all customer preferences
for all i ∈ {1, . . . ,m} do

p1 ← p ∗ fi ∗ Q[q]; // Probability of this
d ← bi; // Customer demands these items
if d ≤ q then // Purchase possible?

Q1[q − d]← Q1[q − d] + p1; // Lower stock
else
// Consider all alternatives (incl. not switching)
for all j ∈ {1, . . . ,m} do

pa ← p1 ∗ ai j; // Probability of this
d ← b j; // Customer demands these items
if d ≤ q then // Alternative purchase possible?

Q1[q − d]← Q1[q − d] + pa; // Lower stock
else
// i = j always goes here
Q1[q]← Q1[q] + pa; // No change

end
end

end
end

end
Q← Q1; // Update Q

end
if pe(k) < 10−8 for all customer types then // Terminate?

return Q;
end

end

Optimizing stocking strategy for bakeries 11

The customer behavior is represented by the matrix ∆Q0, which results from operating
on each (non-zero) entry of Q0.

3.1 Customer modeling
In the linear framework of the probability density evolution method, we can add the effects
of different customers, weighting them by the probability of each customer type, for exam-
ple. The approach chosen here is to model different streams of customers, each with their
own distribution FKi . This allows us to model different populations of customers that arrive
independently of each other at the shop, with potentially different numbers for each type.

Modeling customer behavior is the key to being able to obtain useful results and see the
dependence on customer demand in effect. We would like a model that is straightforward
and relatively simple to implement yet sufficiently flexible to allow for understanding behav-
iors that cannot be described by the simple independence assumption. Here we propose to
describe customer behavior in the following way:

1. Each customer has a certain number of potential purchases that she wants to do on
any given day. The preference for each of these purchases is modeled by a discrete
function f with values fi, i = 1, 2, . . . ,m, where m is the number of different possible
purchases. The preferences are assumed to sum up to 1,

∑m
i=1 fi = 1. In other words,

f is a probability mass function of the customer preferences over the set of potential
purchases. Computationally, we represent this by a vector (array).

2. Each purchase is not limited to a single item but can be a multiset of items (where
items can also be demanded multiple times). We model this by discrete functions
bi : {1, . . . , n} 7→ N0, one for each potential purchase of the customer. The totality
of these functions can be represented by a matrix B = bi j ∈ N

m×n
0 , where the index

i runs over all potential purchases, and the index j runs over all items j = 1, . . . , n.
Importantly, we assume that a purchase is only possible if all the demanded items
(from the multiset bi) are in stock. If one or more items are not in stock in sufficient
quantity, the purchase will fail. This is the main mechanism that allows us to model
(strict) dependence between items.

3. In addition, we assume a set of switching functions ai, i = 1, . . . ,m that for each poten-
tial purchase describe the possibility of the customer switching to a different purchase,
in case the initially desired purchase is not possible. The totality of these functions can
be represented by a matrix A = ai j ∈ R

m×m. The ai j-th entry is the probability that the
customer tries to purchase the j-th multiset of items if the i-th multiset is not available.
The diagonal aii is the probability that the customer does not want to switch and that
the sale will fail if the i-th purchase is not available (because one or more of the desired
items are not in stock), and thus each row

∑m
j=1 ai j = 1 sums to one. We only allow for

a single switch here, although, in principle, multiple switches could be analyzed.

This approach, in principle, allows for a model of arbitrarily complex customer prefer-
ences, although it might become somewhat unwieldy if customers have a lot of indifferences

12 SWI 2024 Proceedings

between items while at the same time requiring a specific number of items in a single pur-
chase. For a small number of different items as here, however, it should be able to cover most
situations of interest.

Example 1: A simple customer. Let us call a customer simple, if she only performs single
item purchases. These purchases are independent of each other, and this customer is repre-
sented by her preferences fi, i = 1, . . . , n, where we use m = n since there are n different items
and thus m = n different single item purchases. The switching distribution is trivial, A = En,
where En is the unit n × n-matrix, as is the purchase matrix B = En.

Example 2: A flexible customer. Let us call a customer flexible, if she only performs single
item purchases, all independent of each other, but potentially switches (once) to a different
item if an initially desired item is not available. This customer is still represented by a pref-
erence vector fi, i = 1, . . . , n and a trivial purchase matrix B = En, but the switching matrix
A = (ai j) is now non-trivial.

Example 3: A correlated customer. Let us call a customer correlated, if she desires a single
multi-item purchase, where all items must be in stock or the whole sale fails. This customer
only has a single desired purchase, so m = 1 and thus f1 = 1. The switching matrix is trivial,
A = a11 = 1, and the desired items are given by a single multiset b1 = b1 j, where j = 1, . . . , n
and b1 j ∈ N0 is the number of cakes of j-th type that the customer needs.

3.2 Demand calculation
The probability density evolution approach allows us to calculate the demand distribution
exactly. The customer behavior is computationally an operator ∆ : Rq0 7→ Rq0 that moves the
probability Q of stock levels around. To obtain the demand distribution, we assume sufficient
stock levels so that we do not ever run out of stock and all desired purchases are possible. In
practice, we realize this by using a sufficiently large initial stock q0. If the demand calculation
detects that stock levels are not sufficient, we let the simulation fail and retry with increased
initial stocks. A simple modification/simplification of Algorithm 1 can be used for this.

Example 4: Demand distribution of simple customer. Let us consider a simple customer
choosing between two items with preference vector f = (2/3, 1/3). Let us use a negative
binomial distribution. Assume a customer rate µ = 20, this leads to N = µ b

1−b , so for
b = 0.99 (see above) we use N = 1980. Simulation shows that an initial stock q0 = (28, 22)
is sufficient to satisfy all sales. Figure 5 shows the initial stock distribution and its final form
after a full day of customers. After k = 50 iterations, the distribution has converged (to the
used numerical accuracy). In other words, we do not need to consider more than 50 customers
in this case.

3.3 Revenue calculation and optimization
Calculating the revenue distribution and its expectation from the final stock level distribution
is straightforward. If the initial stock level was q0 ∈ N

n and the final stock level is q, this

Optimizing stocking strategy for bakeries 13

0 5 10 15 20

0

5

10

15

20

25

Initial stock distribution

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20

0

5

10

15

20

25

Final stock distribution

0.00

0.01

0.02

0.03

0.04

Figure 5: Stock distribution during probability density evolution method. Left: Initial stock
distribution for an initial stock q0 = (28, 22). Right: Final stock distribution after k = 50
potential customer actions have been simulated. See text for details.

means that q0 − q ∈ Nn
0 items of each type have been sold. The overall revenue is then

r(q) = (q0 − q) · p− q0 · c = q0 · (p− c)− q · p, where the dot signifies the scalar product with
the prices and costs vectors p and c.

The expected revenue is thus the expectation of r(q) over all possible final stock levels,
weighted by their probability of occurrence Qq. Moreover, since we have access to the full
distribution Q of all possible stock levels at the end of the period, we can easily calculate the
variance and other indicators of interest. With some slight modifications to the method (not
shown here in detail), we can similarly evolve and keep track of the probability distribution
of the number of satisfied customers or the number of lost sales for each item during a day.

In order to find the optimum stock levels, we first establish a theoretical baseline by
assuming independence of the stocks. If we add the rates of the various customer types mod-
eled, multiplied by their preferences fi for each item, we obtain an effective overall demand
intensity for each stock. Using the inverse of the negative binomial distribution function, we
can calculate these theoretical stock levels. Of course, these will usually not be optimal in
case customers are modeled with dependence or switching.

It is currently unclear how to optimize the initial stock level efficiently, but we have im-
plemented an exhaustive search that starts at a given stock level q0 ∈ N

n
0 and then successively

tries to increase the level of the i-th stock for all i = 1, 2, . . . , n. If the revenue increases while
doing so, the new stock level becomes another target for optimization, and the procedure is
repeated. In fact, a queue is used to keep track of potential candidates for further exploration,
and the algorithm terminates when the queue has become empty. The only assumption that

14 SWI 2024 Proceedings

is made is that there is a clear path from the initial level q0 to the optimal level q∗, i.e., that
there is a sequence of intermediary stock levels q0 < q1 < · · · < qk < qk+1 = q∗ where each
qi, i = 0, 1, . . . , k differs from qi+1 by an increase of exactly one stock by one unit, while the
revenue also increases, r(qi) < r(qi+1). The default is to use q0 = 0 ∈ Nn

0 as the starting point
for the search, but a larger q0 obviously results in a somewhat faster search and might thus be
desired in some cases.

While the stated assumption seems a natural assumption, leading to a straightforward
algorithm, one complication is multi-item purchases. In order to accommodate these, the
algorithm queues additional candidates for further exploration that are further away from the
currently explored q by more than one increase in stock levels. The number of increases
considered is called the depth of the search and a parameter of the algorithm. In this case,
we modify the above assumption such that each qi differs from qi+1 not by a single unit but
by an increase of stocks up to the maximum number of items that can be acquired in a multi-
purchase purchase by any one customer. Under this assumption, it is clear that the optimal
solution will be found if the depth is equal to (or larger) than this number. The algorithm is
shown as Algorithm 2.

3.4 Examples
In this section, a number of scenarios are explored. The code for running these examples can
be found online1.

Example 5: A simple customer. Let us return to the above simple customer with preferences
f = (2/3, 1/3) for two items. The independent optimum stock levels are q0 = (12, 5) with a
revenue of r(q0) = 55.64. The optimization finds an optimum at q∗ = (13, 5), with a revenue
of r(q∗) = 56.04, see Figure 6. These two solutions should be identical, which they are not
exactly — but this is probably just a numerical issue. When trying the same with a larger
rate, e.g. µ = 30, we obtain the same optimum level q0 = q∗ = (19, 8), with expected revenue
r(q∗) = 88.92.

Example 6: A flexible customer. Let us assume a flexible customer with switching matrix
ai j. If we assume strict switching a12 = a21 = 1, the customer will always try to buy the
other item if his first choice is not available. It is expected that the optimum stock levels
then depend on the profit margins, which are here p − c = (4, 3), so we expect the optimum
to mainly feature the first stock. Indeed, optimization leads to q∗ = (20, 0) with a revenue
of r(q∗) = 73.86. The independent solution still retains q0 = (12, 5) with the revenue of
r(q0) = 62.85, so is clearly inferior (as expected). Note that the revenues are larger than in
the case of an independent customer (Example 5).

If we now consider partial switching, say a12 = a21 = 0.5, the optimum stock level
obtained is q∗ = (14, 5), with a revenue r(q∗) = 63.33, which is a lot closer to the independent
solution. These customers cannot be so easily convinced to substitute the more profitable
product for the other one if that is out of stock, so this is expected, although it is somewhat
surprising to see these numbers so close to the independent solution.

1Python code available from: https://github.com/muskulus/swi2024

https://github.com/muskulus/swi2024

Optimizing stocking strategy for bakeries 15

Algorithm 2: Optimization of stock levels
Input: Initial stock levels q0 ∈ N

n
0 for n different stocks; a set of customers with

preferences fi, switching matrices ai j, and purchase matrices bi j; item prices
pi and costs ci; the search depth d; the maximum stock level considered qmax

Output: Stock level q∗ ∈ Nn with largest revenue, ∀q ≤ qmax : r(q) ≤ r(q∗)
Data: Queue C; // Storing candidates for further exploration
Data: V ∈ Rqmax ; // Keeping track of all revenues already seen
Procedure AddFrom(q, depth) // Recursive subroutine

current ← V[q];
for i ∈ {1, . . . , n} do

q[i]← q[i] + 1; // Increase the i-th stock level by one
if V[q] = −Inf then // Not explored these stock levels yet

V[q]← r(q); // Perform simulation and calculate revenue
if V[q] > current then // Only if there is improvement

C.put(q); // q is candidate for further exploration
end

end
// Try additional stock increases
if depth > 1 then AddFrom (q, depth - 1);
q[i]← q[i] − 1;

end
return

Algorithm Search(q0, ...)
V ← −Inf; // Revenue of all stock levels currently unknown
best,V[q0]← r(q0); // Calculate revenue of starting point
q∗ ← q0; // Starting point is current best solution
AddFrom (q0, depth); // Add initial candidates from q0 to C
while C is not empty do

q← C.pop(); // Remove next candidate from queue
// All candidates in queue have been evaluated, V[q] > −Inf
if V[q] > best then

best← V[q];
q∗ ← q;

end
AddFrom (q, depth); // Add candidates for exploration to C

end
return q∗

16 SWI 2024 Proceedings

0 1 2 3 4 5

0

2

4

6

8

10

12

q0=[13 5]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0 1 2 3 4 5

0

2

4

6

8

10

12

q0=[10 5]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Figure 6: Final stock distribution during probability density evolution method with limited
stock. The vertical axis corresponds to the levels of the first stock, and the horizontal axis
corresponds to the levels of the second stock. Left: Optimal initial stock q0 = (13, 5),
leading to an expected revenue of 56.0. Right: Smaller initial stock q0 = (10, 5), leading to
an expected revenue of 50.9. The results are plotted on the same domain as the left plot for
comparison purposes. One can see how there is less probability of one or more stock
remaining for the first item, compared to the previous case, as expected.

Optimizing stocking strategy for bakeries 17

13 14 15 16 17 18 19 20
Item 1

0

1

2

3

4

5

Ite

m
 2

0.000 0.471

0.685

0.772

0.791 0.839 0.986

Optimal stock levels

0.0 0.2 0.4 0.6 0.8 1.0
Switching probability

57.5

60.0

62.5

65.0

67.5

70.0

72.5

Ex
pe

ct
at

io
n

Optimal revenue

Figure 7: Results for varying the switching probability a12 = a21. Left: Optimal stock levels
for different switching probabilities. Larger switching probabilities correspond to points
further on the right (with more of the first stock and less of the second, less profitable one).
Right: Expected revenue for various switching probabilities α under optimal stocks. Notice
the change in slope around α ≈ 0.79, which corresponds to the jump in the left plot (see text
for details).

Indeed, plotting the optimal stock levels for different values of switching probability α =
a12 = a21 in Figure 7 shows an interesting phenomenon: For small levels of α (left side
of the left plot) the optimal stock levels are close to the one for α = 0 from Example 5
(q∗ = (13, 5)), whereas for large levels of α the optimum is obtained by stocking only the first,
more profitable item (q∗ = (18, 0)). Interestingly, the optimal stock level is quite sensitive to
the switching probability and changes rapidly around a certain value of α. Here this value is
approximately α ≈ 0.79, where the optimal stock level jumps from q1 = (16, 3) for α = 0.79
to q2 = (18, 0) for α = 0.80. Bisecting the value of α numerically leads to an estimate of
0.790630588 ≤ α∗ ≤ 0.790630589 for the critical value where the jump occurs, so this is
indeed a very sudden change. Moreover, it is unclear if the optimal stock level takes on other
intermediate values between the two values q1 and q2 for values of α inside the bracketed
interval.

Example 7: A correlated customer. Let us assume a customer that only buys the two stocks
together - or nothing. We halve the rate of appearance so that, on average, the same number
of items are demanded during a day as in the previous examples. The optimal stock level is
then q∗ = (9, 9) with a revenue of 59.45.

Example 8: A general customer. Let us assume a customer that either buys the first item
or buys the two stocks together, with equal probability but with no switching possible. If
we adjust the rate of appearance by a factor of 2/3, the optimal stock level is q∗ = (13, 6)
with a revenue of r = 51.57. The optimal stock level is slightly larger than in the case of a
simple customer (Example 5), but the revenue obtained is significantly less, even though, on
average, both purchase the same items. In other words, it seems that not only should we stock
slightly more items if some purchases are correlated, but also the revenue will be somewhat

18 SWI 2024 Proceedings

Example q∗ r(q∗) β∗ Description
5 (12,5) 55.64 0.447, 0.422 Independent solution

(13,5) 56.04 0.520, 0.422 Simple customer
6 Flexible customer (switching)

(13,5) 56.04-62.92 0.520, 0.422 α = 0.000–0.470
(14,5) 62.92-65.66 0.516, 0.395 α = 0.471–0.684
(15,4) 65.66-66.96 0.508, 0.367 α = 0.685–0.772
(16,3) 66.96-67.32 0.509, 0.356 α = 0.773–0.790
(18,0) 67.32-68.61 0.472, 0.000 α = 0.791–0.839
(19,0) 68.61-73.29 0.540, 0.000 α = 0.840–0.985
(20,0) 73.29-73.86 0.540, 0.000 α = 0.986–1.000

7 (9,9) 59.45 0.358, 0.358 Correlated customer
8 (13,6) 51.57 0.647, 0.503 General customer
9 (11,8) 52.32 0.558, 0.568 Multiple customers
10 Simple customer (service level)

(17,5) 42.56 0.916, 0.423 β = 0.90
(18,5) 36.93 0.964, 0.423 β = 0.95
(19,5) 31.05 0.996, 0.423 β = 0.99
(21,5) 19.10 1.000, 0.423 β = 1.00

Table 5: Overview of results from considered examples. In all cases p = (10, 13),
c = (6, 10), and the effective rate of customers is µeff = 20. Simple customers have
preferences f = (2/3, 1/3) for purchasing one of the two items. Parameter α is the switching
probability; β is the required service level for the first item, and β∗ are the actual service
levels obtained. For the flexible customer, the reported service levels are for the first value of
α in each interval.

smaller than if all purchases are independent. This might be important when considering
overall business profitability.

Example 9: Multiple customers. Let us study another case where we expand on the last
two examples. Consider the same general and correlated customers and add them together
so that we have these two different customer types alternatingly visiting the shop. We adjust
their appearance rates, so that on average the same number of customers enter the shop, as
before. The optimal stock level is now q∗ = (11, 8) with an average revenue of r = 52.32, so
lies right between the two cases found in Example 7 and Example 8.

Example 10: Service level optimization. For this final case, we have considered optimizing
the service level, i.e., the probability that a certain item does not run out of stock during a
given day. This information is readily available2 from the stochastic simulation, with just a

2There is some ambiguity in what we mean by service level when considering customer switching probabilities.
Traditionally, we would define it as the probability of no lost sale for the item in question during a given period.

Optimizing stocking strategy for bakeries 19

few simple modifications of the code (not shown). For the optimization, we use a simple
penalty method. The service level constraint puts very strict requirements on the stock levels,
though. For example, if we require the service level β of the first item to be β = 0.90, an
initial stock of q0 = (17, 5) is needed, and the profit shrinks to just r(q0) = 42.56. Even
higher service levels lead to even stricter requirements, and the profits become even smaller,
see Table 5. Therefore, in general, service levels are relatively small (around 50 percent) for
optimal solutions when we do not impose such a requirement.

3.5 Discussion
We employed several approaches to explore optimal stocking strategies for cakes in small
bakeries, aiming to maximize profits. Our approach involved conducting computationally
efficient large-scale simulations to mimic sales on a typical day, considering variations in
customer behavior. This framework enabled us initially to calculate the average profit derived
from specific stocking strategies. Subsequently, we compared various strategies against each
other to identify the one that optimizes profit while minimizing waste, employing random
search techniques such as genetic algorithms (Mitchell, 1966).

Our findings suggest that, for straightforward scenarios where stocking levels are directly
proportional to demand estimates from typical sales data, increasing inventory by approxi-
mately 25% is beneficial. However, surpassing this threshold leads to an increase in unsold
cakes with associated production costs, which are not counterbalanced by additional sales.
To develop more sophisticated and effective stocking strategies, it will be crucial to enhance
our computational models to consider the variability in customer numbers, as well as the
wide range of customer behaviors and preferences. Insights into these aspects, such as the
distribution of customer purchases and combinations of cakes bought in a single transaction,
can be obtained from sales data and payment receipts.

Moreover, our optimization algorithm can be further refined to include additional consid-
erations. For example, if a bakery is known for a specific product like “Limburgse vlaai”,
it may prioritize ensuring the supply of these items, accepting potential financial losses to
maintain its reputation for having such a product readily available. Adding this feature to our
computational models is straightforward and will be the topic of future investigations.

The probability density evolution method seems to be a useful approach to finding the
demand distribution and the expected revenue for a given initial stock level exactly. That
said, what can we learn from the example scenarios studied? Table 2 gives an overview of
the results from the examples.

The main conclusion seems to be the following: If customers are amenable to switching
between different items (with different profit margins), the expected revenue will be larger
than if customers have strict purchase preferences. This is obvious since if customers are
more flexible in their purchases, then if one item has run out of stock, there might still be a
sale for a substitute item that would otherwise not go through. Interestingly, the optimal stock
levels change quite abruptly — there is a certain level of switching probability after which it

However, it is somewhat unclear what this means when customers can switch to different items. Therefore we have
implemented the service level here as the inverse of the probability that the item in question goes from a non-negative
stock to zero stock (a so-called “stock-out”) during a given period.

20 SWI 2024 Proceedings

makes sense for the shop to only stock the more profitable item(s). The main conclusion here
is that it makes sense for shops to motivate customers to consider switching to (preferably
higher profit) items if their original purchase is not available. Related to this, it could make
sense for shops to motivate customers to buy items together, as this makes the demand more
predictable and potentially somewhat easier to optimize. However, it has been seen that
correlated demand can also reduce profits, depending on how profit margins and customer
preferences are aligned.

Some limitations of the probability density evolution method should be mentioned: It is
somewhat time-consuming, and the computational effort rises dramatically in the number of
stocks that are considered together. That said, it is possible to find the optimal stock levels
for a small number of items (say n = 3) in a few minutes on a standard computer. Some
assumptions have been made to simplify the problem, though that should be mentioned. The
most important is that different customer types are assumed to arrive at the shop in a certain
order: The purchases of the first customer are simulated for each customer type one after
the other, before considering the next customer for each customer type. This means that if
the arrival rates (the expected number of customers per day) are quite different for different
types of customers, the results of the probabilistic simulation will not be representative. A
better strategy would be to consider all (or most of) the different orders with which customers
might arrive at the shop. However, it is currently unclear how to do this in a way that is
computationally not too demanding. This interesting issue is thus left for future work.

Going back to the implemented model, there are also some interesting mathematical ques-
tions remaining on how to optimize the stock levels efficiently; the current exhaustive search
strategy, while being able to find the optimal stock levels also in complicated cases (with
depth > 1), is clearly inefficient. It has also not been proven that the assumption behind the
optimization strategy (that there is always a path of increasing stock levels to the optimum)
is always valid.

Finally, a general takeaway is that customer modeling is the most important issue in
optimizing stock levels. It seems, therefore, advisable to spend more effort on understanding
actual customer behavior. For example, future work might want to study the interesting
problem of how to infer different customer types and their arrival rates from sales data.

4 Conclusion
This article has discussed multiple approaches for stocking strategy and the testing of given
stocking strategies. Firstly, based on probabilistic considerations, we suggest to stock accord-
ing to newsvendor, but to augment the probability distribution to take into account substitu-
tion sales as in section 1. We suggest simulations as in section 2 to test large-scale stock-
ing strategies. To gain insight into a given stocking strategy with a small number of items,
we suggest using probability evolution as in section 3. For both large-scale simulation and
probability evolution, we have also provided tools for optimizing stocking strategy. In those
sections, we have also discussed in more detail the merits of these simulations and provided
directions for further research.

Optimizing stocking strategy for bakeries 21

References
Kenneth J. Arrow, Theodore Harris, and Jacob Marschak. Optimal Inventory Policy. Econo-

metrica, 19:250–272, 1951. doi: 10.2307/1906813.

Jie Li. Probability density evolution method: Background, significance and recent de-
velopments. Probabilistic Engineering Mechanics, 44:111–117, 2016. doi: 10.1016/j.
probengmech.2015.09.013.

M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA, 1966.

William H. Press, editor. Numerical recipes: the art of scientific computing. Cambridge
University Press, New York, 3rd edition, 2007.

Yan Qin, Ruoxuan Wang, Asoo J. Vakharia, Yuwen Chen, and Michelle M.H. Seref. The
newsvendor problem: Review and directions for future research. European Journal of
Operational Research, 213:361–374, 2011. doi: 10.1016/j.ejor.2010.11.024.

Stephen A Smith and Narendra Agrawal. Management of multi-item retail inventory systems
with demand substitution. Operations Research, 48:50–64, 2000.

	Introduction
	Large-scale simulations: a day in the bakery
	Model assumptions and parameters setup
	Simulation method and result

	Probabilistic simulation
	Customer modeling
	Demand calculation
	Revenue calculation and optimization
	Examples
	Discussion

	Conclusion

